Skip to main content

Advertisement

Log in

Endothelial Precursor Cells

  • Published:
Stem Cell Reviews Aims and scope Submit manuscript

Abstract

The discovery and subsequent characterization of endothelial precursor cells (EPCs) has stimulated interest in their potential use in older persons. Understanding the mechanisms that underlie EPC availability and function has important clinical implications for this age group. In this review, we discuss aspects of EPCs that are relevant to their role in angiogenesis and cardiovascular disease. We then review the limited data on features of EPCs that are known to be altered in aging and might better define their clinical utility in older persons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Heart Association (2007). Older Americans and cardiovascular disease—Statistics.

  2. Barbagallo, M., Resnick, L. M., Dominguez, L. J., & Licata, G. (1997). Diabetes mellitus, hypertension and ageing: The ionic hypothesis of ageing and cardiovascular-metabolic diseases. Diabetes & Metabolism, 23(4), 281–294.

    CAS  Google Scholar 

  3. Droge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews, 82(1), 47–95.

    PubMed  CAS  Google Scholar 

  4. Bilato, C., & Crow, M. T. (1996). Atherosclerosis and the vascular biology of aging. Aging (Milano), 8(4), 221–234.

    CAS  Google Scholar 

  5. Aguirre, F. V., McMahon, R. P., Mueller, H., Kleiman, N. S., Kern, M. J., Desvigne-Nickens, P., et al. (1994). Impact of age on clinical outcome and postlytic management strategies in patients treated with intravenous thrombolytic therapy. Results from the TIMI II Study. TIMI II Investigators. Circulation, 90(1), 78–86.

    PubMed  CAS  Google Scholar 

  6. Reed, M. J., & Edelberg, J. M. (2004). Impaired angiogenesis in the aged. Science of Aging Knowledge Environment, 2004(7), pe7.

    Article  PubMed  Google Scholar 

  7. Edelberg, J. M., & Reed, M. J. (2003). Aging and angiogenesis. Frontiers in Bioscience, 8, s1199–s1209.

    Article  PubMed  CAS  Google Scholar 

  8. Sadoun, E., & Reed, M. J. (2003). Impaired angiogenesis in aging is associated with alterations in vessel density, matrix composition, inflammatory response, and growth factor expression. Journal of Histochemistry and Cytochemistry, 51(9), 1119–1130.

    PubMed  CAS  Google Scholar 

  9. Urbich, C., & Dimmeler, S. (2004). Endothelial progenitor cells: Characterization and role in vascular biology. Circulation Research, 95(4), 343–353.

    Article  PubMed  CAS  Google Scholar 

  10. Barber, C. L., & Iruela-Arispe, M. L. (2006). The ever-elusive endothelial progenitor cell: Identities, functions and clinical implications. Pediatric Research, 59(4 Pt 2), 26R–32R.

    Article  PubMed  Google Scholar 

  11. Sabin, F. R. (2002). Preliminary note on the differentiation of angioblasts and the method by which they produce blood-vessels, blood-plasma and red blood-cells as seen in the living chick. 1917. Journal of Hematotherapy & Stem Cell Research, 11(1), 5–7.

    Article  Google Scholar 

  12. Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., et al. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275(5302), 964–967.

    Article  PubMed  CAS  Google Scholar 

  13. Shi, Q., Rafii, S., Wu, M. H., Wijelath, E. S., Yu, C., Ishida, A., et al. (1998). Evidence for circulating bone marrow-derived endothelial cells. Blood, 92(2), 362–367.

    PubMed  CAS  Google Scholar 

  14. Lyden, D., Young, A. Z., Zagzag, D., Yan, W., Gerald, W., O'Reilly, R., et al. (1999). Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature, 401(6754), 670–677.

    Article  PubMed  CAS  Google Scholar 

  15. Peichev, M., Naiyer, A. J., Pereira, D., Zhu, Z., Lane, W. J., Williams, M., et al. (2000). Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood, 95(3), 952–958.

    PubMed  CAS  Google Scholar 

  16. Schmeisser, A., Garlichs, C. D., Zhang, H., Eskafi, S., Graffy, C., Ludwig, J., et al. (2001). Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel under angiogenic conditions. Cardiovascular Research, 49(3), 671–680.

    Article  PubMed  CAS  Google Scholar 

  17. Urbich, C., Heeschen, C., Aicher, A., Dernbach, E., Zeiher, A. M., & Dimmeler, S. (2003). Relevance of monocytic features for neovascularization capacity of circulating endothelial progenitor cells. Circulation, 108(20), 2511–2516.

    Article  PubMed  Google Scholar 

  18. Rehman, J., Li, J., Orschell, C. M., & March, K. L. (2003). Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation, 107(8), 1164–1169.

    Article  PubMed  Google Scholar 

  19. Hillebrands, J. L., Klatter, F. A., van Dijk, W. D., & Rozing, J. (2002). Bone marrow does not contribute substantially to endothelial-cell replacement in transplant arteriosclerosis. Natural Medicines, 8(3), 194–195.

    Article  Google Scholar 

  20. Ingram, D. A., Mead, L. E., Moore, D. B., Woodard, W., Fenoglio, A., & Yoder, M. C. (2005). Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood, 105(7), 2783–2786.

    Article  PubMed  CAS  Google Scholar 

  21. Zengin, E., Chalajour, F., Gehling, U. M., Ito, W. D., Treede, H., Lauke, H., et al. (2006). Vascular wall resident progenitor cells: A source for postnatal vasculogenesis. Development, 133(8), 1543–1551.

    Article  PubMed  CAS  Google Scholar 

  22. Reyes, M., Dudek, A., Jahagirdar, B., Koodie, L., Marker, P. H., & Verfaillie, C. M. (2002). Origin of endothelial progenitors in human postnatal bone marrow. Journal of Clinical Investigation, 109(3), 337–346.

    Article  PubMed  CAS  Google Scholar 

  23. Planat-Benard, V., Silvestre, J. S., Cousin, B., Andre, M., Nibbelink, M., Tamarat, R., et al. (2004). Plasticity of human adipose lineage cells toward endothelial cells: Physiological and therapeutic perspectives. Circulation, 109(5), 656–663.

    Article  PubMed  Google Scholar 

  24. Urbich, C., & Dimmeler, S. (2004). Endothelial progenitor cells functional characterization. Trends in Cardiovascular Medicine, 14(8), 318–322.

    Article  PubMed  CAS  Google Scholar 

  25. Beltrami, A. P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Chimenti, S., et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114(6), 763–776.

    Article  PubMed  CAS  Google Scholar 

  26. Wurmser, A. E., Nakashima, K., Summers, R. G., Toni, N., D'Amour, K. A., Lie, D. C., et al. (2004). Cell fusion-independent differentiation of neural stem cells to the endothelial lineage. Nature, 430(6997), 350–356.

    Article  PubMed  CAS  Google Scholar 

  27. Aicher, A., Rentsch, M., Sasaki, K., Ellwart, J. W., Fandrich, F., Siebert, R., et al. (2007). Nonbone marrow-derived circulating progenitor cells contribute to postnatal neovascularization following tissue ischemia. Circulation Research, 100(4), 581–589.

    Article  PubMed  CAS  Google Scholar 

  28. Askari, A. T., Unzek, S., Popovic, Z. B., Goldman, C. K., Forudi, F., Kiedrowski, M., et al. (2003). Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet, 362(9385), 697–703.

    Article  PubMed  CAS  Google Scholar 

  29. Kocher, A. A., Schuster, M. D., Szabolcs, M. J., Takuma, S., Burkhoff, D., Wang, J., et al. (2001). Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Natural Medicines, 7(4), 430–436.

    Article  CAS  Google Scholar 

  30. Laing, A. J., Dillon, J. P., Condon, E. T., Street, J. T., Wang, J. H., McGuinness, A. J., et al. (2007). Mobilization of endothelial precursor cells: Systemic vascular response to musculoskeletal trauma. Journal of Orthoptera Research, 25(1), 44–50.

    Article  CAS  Google Scholar 

  31. Soligo, D., Schiro, R., Luksch, R., Manara, G., Quirici, N., Parravicini, C., et al. (1990). Expression of integrins in human bone marrow. British Journal of Haematology, 76(3), 323–332.

    PubMed  CAS  Google Scholar 

  32. Chavakis, E., Aicher, A., Heeschen, C., Sasaki, K., Kaiser, R., El Makhfi, N., et al. (2005). Role of beta2-integrins for homing and neovascularization capacity of endothelial progenitor cells. Journal of Experimental Medicine, 201(1), 63–72.

    Article  PubMed  CAS  Google Scholar 

  33. Wu, Y., Ip, J. E., Huang, J., Zhang, L., Matsushita, K., Liew, C. C., et al. (2006). Essential role of ICAM-1/CD18 in mediating EPC recruitment, angiogenesis, and repair to the infarcted myocardium. Circulation Research, 99(3), 315–322.

    Article  PubMed  CAS  Google Scholar 

  34. Qin, G., Ii, M., Silver, M., Wecker, A., Bord, E., Ma, H., et al. (2006). Functional disruption of alpha4 integrin mobilizes bone marrow-derived endothelial progenitors and augments ischemic neovascularization. Journal of Experimental Medicine, 203(1), 153–163.

    Article  PubMed  CAS  Google Scholar 

  35. Lee, S. H., Wolf, P. L., Escudero, R., Deutsch, R., Jamieson, S. W., & Thistlethwaite, P. A. (2000). Early expression of angiogenesis factors in acute myocardial ischemia and infarction. New England Journal of Medicine, 342(9), 626–633.

    Article  PubMed  CAS  Google Scholar 

  36. Lyden, D., Hattori, K., Dias, S., Costa, C., Blaikie, P., Butros, L., et al. (2001). Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Natural Medicines, 7(11), 1194–1201.

    Article  CAS  Google Scholar 

  37. Ling, M. T., Lau, T. C., Zhou, C., Chua, C. W., Kwok, W. K., Wang, Q., et al. (2005). Overexpression of Id-1 in prostate cancer cells promotes angiogenesis through the activation of vascular endothelial growth factor (VEGF). Carcinogenesis, 26(10), 1668–1676.

    Article  PubMed  CAS  Google Scholar 

  38. Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438(7069), 820–827.

    Article  PubMed  CAS  Google Scholar 

  39. Heissig, B., Hattori, K., Dias, S., Friedrich, M., Ferris, B., Hackett, N. R., et al. (2002). Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell, 109(5), 625–637.

    Article  PubMed  CAS  Google Scholar 

  40. Yamaguchi, J., Kusano, K. F., Masuo, O., Kawamoto, A., Silver, M., Murasawa, S., et al. (2003). Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation, 107(9), 1322–1328.

    Article  PubMed  CAS  Google Scholar 

  41. Ceradini, D. J., & Gurtner, G. C. (2005). Homing to hypoxia: HIF-1 as a mediator of progenitor cell recruitment to injured tissue. Trends in Cardiovascular Medicine, 15(2), 57–63.

    Article  PubMed  CAS  Google Scholar 

  42. Vajkoczy, P., Blum, S., Lamparter, M., Mailhammer, R., Erber, R., Engelhardt, B., et al. (2003). Multistep nature of microvascular recruitment of ex vivo-expanded embryonic endothelial progenitor cells during tumor angiogenesis. Journal of Experimental Medicine, 197(12), 1755–1765.

    Article  PubMed  CAS  Google Scholar 

  43. Tamura, M., Unno, K., Yonezawa, S., Hattori, K., Nakashima, E., Tsukada, H., et al. (2004). In vivo trafficking of endothelial progenitor cells their possible involvement in the tumor neovascularization. Life Science, 75(5), 575–584.

    Article  CAS  Google Scholar 

  44. Urbich, C., Heeschen, C., Aicher, A., Sasaki, K., Bruhl, T., Farhadi, M. R., et al. (2005). Cathepsin L is required for endothelial progenitor cell-induced neovascularization. Natural Medicines, 11(2), 206–213.

    Article  CAS  Google Scholar 

  45. Bergers, G., Brekken, R., McMahon, G., Vu, T. H., Itoh, T., Tamaki, K., et al. (2000). Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biology, 2(10), 737–744.

    Article  PubMed  CAS  Google Scholar 

  46. Turpeenniemi-Hujanen, T. (2005). Gelatinases (MMP-2 and -9) and their natural inhibitors as prognostic indicators in solid cancers. Biochimie, 87(3–4), 287–297.

    Article  PubMed  CAS  Google Scholar 

  47. Ballard, V. L., Sharma, A., Duignan, I., Holm, J. M., Chin, A., Choi, R., et al. (2006). Vascular tenascin-C regulates cardiac endothelial phenotype and neovascularization. FASEB Journal, 20(6), 717–719.

    PubMed  CAS  Google Scholar 

  48. Lai, S. R., Phipps, S. M., Liu, L., Andrews, L. G., & Tollefsbol, T. O. (2005). Epigenetic control of telomerase and modes of telomere maintenance in aging and abnormal systems. Frontiers in Bioscience, 10, 1779–1796.

    Article  PubMed  CAS  Google Scholar 

  49. Park, Y., & Gerson, S. L. (2005). DNA repair defects in stem cell function and aging. Annual Review of Medicine, 56, 495–508.

    Article  PubMed  CAS  Google Scholar 

  50. Fleisig, H. B., & Wong, J. M. (2007). Telomerase as a clinical target: Current strategies and potential applications. Experimental Gerontology, 42(1–2), 102–112.

    Article  PubMed  CAS  Google Scholar 

  51. Resnitzky, P., Segal, M., Barak, Y., & Dassa, C. (1987). Granulopoiesis in aged people: Inverse correlation between bone marrow cellularity and myeloid progenitor cell numbers. Gerontology, 33(2), 109–114.

    Article  PubMed  CAS  Google Scholar 

  52. Muschler, G. F., Nitto, H., Boehm, C. A., & Easley, K. A. (2001). Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. Journal of Orthoptera Research, 19(1), 117–125.

    Article  CAS  Google Scholar 

  53. Shaffer, R. G., Greene, S., Arshi, A., Supple, G., Bantly, A., Moore, J. S., et al. (2006). Flow cytometric measurement of circulating endothelial cells: the effect of age and peripheral arterial disease on baseline levels of mature and progenitor populations. Cytometry B Clin Cytom, 70(2), 56–62.

    Google Scholar 

  54. Scheubel, R. J., Zorn, H., Silber, R. E., Kuss, O., Morawietz, H., Holtz, J., et al. (2003). Age-dependent depression in circulating endothelial progenitor cells in patients undergoing coronary artery bypass grafting. Journal of the American College of Cardiology, 42(12), 2073–2080.

    Article  PubMed  Google Scholar 

  55. Thijssen, D. H., Vos, J. B., Verseyden, C., van Zonneveld, A. J., Smits, P., Sweep, F. C., et al. (2006). Haematopoietic stem cells and endothelial progenitor cells in healthy men: Effect of aging and training. Aging Cell, 5(6), 495–503.

    Article  PubMed  CAS  Google Scholar 

  56. Hoetzer, G. L., Van Guilder, G. P., Irmiger, H., Keith, R. S., Stauffer, B. L., & Desouza, C. A. (2007). Aging, exercise and endothelial progenitor cell clonogenic and migratory capacity in men. Journal of Applied Physiology, 102, 847–852.

    Article  PubMed  Google Scholar 

  57. Mieno, S., Boodhwani, M., Clements, R. T., Ramlawi, B., Sodha, N. R., Li, J., et al. (2006). Aging is associated with an impaired coronary microvascular response to vascular endothelial growth factor in patients. Journal of Thoracic and Cardiovascular Surgery, 132(6), 1348–1355.

    Article  PubMed  CAS  Google Scholar 

  58. Zhang, W., Zhang, G., Jin, H., & Hu, R. (2006). Characteristics of bone marrow-derived endothelial progenitor cells in aged mice. Biochemical and Biophysical Research Communications, 348(3), 1018–1023.

    Article  PubMed  CAS  Google Scholar 

  59. Heiss, C., Keymel, S., Niesler, U., Ziemann, J., Kelm, M., & Kalka, C. (2005). Impaired progenitor cell activity in age-related endothelial dysfunction. Journal of the American College of Cardiology, 45(9), 1441–1448.

    Article  PubMed  CAS  Google Scholar 

  60. Hoetzer, G. L., MacEneaney, O. J., Irmiger, H. M., Keith, R., Van Guilder, G. P., Stauffer, B. L., et al. (2007). Gender differences in circulating endothelial progenitor cell colony-forming capacity and migratory activity in middle-aged adults. American Journal of Cardiology, 99(1), 46–48.

    Article  PubMed  Google Scholar 

  61. Edelberg, J. M., Tang, L., Hattori, K., Lyden, D., & Rafii, S. (2002). Young adult bone marrow-derived endothelial precursor cells restore aging-impaired cardiac angiogenic function. Circulation Research, 90(10), E89–E93.

    Article  PubMed  CAS  Google Scholar 

  62. Klibansky, D. A., Chin, A., Duignan, I. J., & Edelberg, J. M. (2006). Synergistic targeting with bone marrow-derived cells and PDGF improves diabetic vascular function. American Journal of Physiology Heart and Circulatory Physiology, 290(4), H1387–H1392.

    Article  PubMed  CAS  Google Scholar 

  63. Swift, M. E., Kleinman, H. K., & DiPietro, L. A. (1999). Impaired wound repair and delayed angiogenesis in aged mice. Laboratory Investigation, 79(12), 1479–1487.

    PubMed  CAS  Google Scholar 

  64. Rivard, A., Fabre, J., Silver, M., Chen, D., Murohara, T., Kearney, M., et al. (1999). Aged-dependent impairment of angiogenesis. Circulation, 99, 111–120.

    PubMed  CAS  Google Scholar 

  65. Reed, M. J., Corsa, A. C., Kudravi, S. A., McCormick, R. S., & Arthur, W. T. (2000). A deficit in collagenase activity contributes to impaired migration of aged microvascular endothelial cells. Journal of Cellular Biochemistry, 77(1), 116–126.

    Article  PubMed  CAS  Google Scholar 

  66. Xia, Y. P., Zhao, Y., Tyrone, J. W., Chen, A., & Mustoe, T. A. (2001). Differential activation of migration by hypoxia in keratinocytes isolated from donors of increasing age: Implication for chronic wounds in the elderly. Journal of Investigative Dermatology, 116(1), 50–56.

    Article  PubMed  CAS  Google Scholar 

  67. Koike, T., Vernon, R. B., Gooden, M. D., Sadoun, E., & Reed, M. J. (2003). Inhibited angiogenesis in aging: A role for TIMP-2. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 58(9), B798–B805.

    Google Scholar 

  68. Rauscher, F. M., Goldschmidt-Clermont, P. J., Davis, B. H., Wang, T., Gregg, D., Ramaswami, P., et al. (2003). Aging, progenitor cell exhaustion, and atherosclerosis. Circulation, 108(4), 457–463.

    Article  PubMed  Google Scholar 

  69. Pallante, B. A., Duignan, I., Okin, D., Chin, A., Bressan, M. C., Mikawa, T., et al. (2007). Bone marrow Oct3/4+ cells differentiate into cardiac myocytes via age-dependent paracrine mechanisms. Circulation Research, 100(1), e1–e11.

    Article  PubMed  CAS  Google Scholar 

  70. Edelberg, J. M., Lee, S. H., Kaur, M., Tang, L., Feirt, N. M., McCabe, S., et al. (2002). Platelet-derived growth factor-AB limits the extent of myocardial infarction in a rat model: Feasibility of restoring impaired angiogenic capacity in the aging heart. Circulation, 105(5), 608–613.

    Article  PubMed  CAS  Google Scholar 

  71. Xaymardan, M., Tang, L., Zagreda, L., Pallante, B., Zheng, J., Chazen, J. L., et al. (2004). Platelet-derived growth factor-AB promotes the generation of adult bone marrow-derived cardiac myocytes. Circulation Research, 94(5), E39–E45.

    Article  PubMed  Google Scholar 

  72. Rosenzweig, A. (2006). Cardiac cell therapy-mixed results from mixed cells. New England Journal of Medicine, 355(12), 1274–1277.

    Article  PubMed  CAS  Google Scholar 

  73. Shantsila, E., Watson, T., & Lip, G. Y. (2007). Endothelial progenitor cells in cardiovascular disorders. Journal of the American College of Cardiology, 49(7), 741–752.

    Article  PubMed  CAS  Google Scholar 

  74. Badorff, C., Brandes, R. P., Popp, R., Rupp, S., Urbich, C., Aicher, A., et al. (2003). Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation, 107(7), 1024–1032.

    Article  PubMed  Google Scholar 

  75. Alvarez-Dolado, M., Pardal, R., Garcia-Verdugo, J. M., Fike, J. R., Lee, H. O., Pfeffer, K., et al. (2003). Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature, 425(6961), 968–973.

    Article  PubMed  CAS  Google Scholar 

  76. Aicher, A., Zeiher, A. M., & Dimmeler, S. (2005). Mobilizing endothelial progenitor cells. Hypertension, 45(3), 321–325.

    Article  PubMed  CAS  Google Scholar 

  77. Wollert, K. C., Meyer, G. P., Lotz, J., Ringes-Lichtenberg, S., Lippolt, P., Breidenbach, C., et al. (2004). Intracoronary autologous bone-marrow cell transfer after myocardial infarction: The BOOST randomised controlled clinical trial. Lancet, 364(9429), 141–148.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to May J. Reed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reed, M.J., Karres, N., Eyman, D. et al. Endothelial Precursor Cells. Stem Cell Rev 3, 218–225 (2007). https://doi.org/10.1007/s12015-007-0007-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-007-0007-5

Keywords

Navigation