Stem Cell Reviews

, Volume 3, Issue 1, pp 30–38 | Cite as

Networking of WNT, FGF, Notch, BMP, and Hedgehog Signaling Pathways during Carcinogenesis

Article

Abstract

The biological functions of some orthologs within the human genome and model-animal genomes are evolutionarily conserved, but those of others are divergent due to protein evolution and promoter evolution. Because WNT signaling molecules play key roles during embryogenesis, tissue regeneration and carcinogenesis, the author’s group has carried out a human WNT-ome project for the comprehensive characterization of human genes encoding WNT signaling molecules. From 1996 to 2002, we cloned and characterized WNT2B/WNT13, WNT3, WNT3A, WNT5B, WNT6, WNT7B, WNT8A, WNT8B, WNT9A/WNT14, WNT9B/WNT14B, WNT10A, WNT10B, WNT11, FZD1, FZD2, FZD3, FZD4, FZD5, FZD6, FZD7, FZD8, FZD10, FRAT1, FRAT2, NKD1, NKD2, VANGL1, RHOU/ARHU, RHOV/ARHV, GIPC2, GIPC3, FBXW11/βTRCP2, SOX17, TCF7L1/TCF3, and established a cDNA-PCR system for snap-shot and dynamic analyses on the WNT-transcriptome. In 2003, we identified and characterized PRICKLE1, PRICKLE2, DACT1/DAPPER1, DACT2/DAPPER2, DAAM2, and BCL9L. After completion of the human WNT-ome project, we have been working on the stem cell signaling network. WNT signals are transduced to β-catenin, NLK, NFAT, PKC, JNK and RhoA signaling cascades. FGF20, JAG1 and DKK1 are target genes of the WNT-β-catenin signaling cascade. Cross-talk of WNT and FGF signaling pathways potentiates β-catenin and NFAT signaling cascades. BMP signals induce IHH upregulation in co-operation with RUNX. Hedgehog signals induce upregulation of SFRP1, JAG2 and FOXL1, and then FOXL1 induces BMP4 upregulation. The balance between WNT-FGF-Notch and BMP-Hedgehog signaling networks is important for the maintenance of homoestasis among stem and progenitor cells. Disruption of the stem cell signaling network results in pathological conditions, such as congenital diseases and cancer.

Keywords

WNT FGF Notch BMP Hedgehog Stem cell biology Comparative integromics Systems medicine 

References

  1. 1.
    Katoh, M. (2002). WNT and FGF gene clusters. International Journal of Oncology, 21, 1269–1273.PubMedGoogle Scholar
  2. 2.
    Katoh, M. (2002). Regulation of WNT signaling molecules by retinoic acid during neuronal differentiation in NT2 cells: Threshold model of WNT action. International Journal of Molecular Medicine, 10, 683–687.PubMedGoogle Scholar
  3. 3.
    Katoh, M. (2002). Paradignshift in gene-finding method: From bench-top approach to desk-top approach. International Journal of Molecular Medicine, 10, 677–682.PubMedGoogle Scholar
  4. 4.
    Katoh, M., & Katoh, M. (2006). Bioinformatics for cancer management in the post-genome era. Technology in Cancer Research & Treatment, 5, 169–176.Google Scholar
  5. 5.
    Swain, R. K., Katoh, M., Medina, A., & Steinbeisser, H. (2005). Xenopus frizzled-4S, a splicing variant of Xfz4, is a context-dependent activator and inhibitor of Wnt/β-catenin signaling. Cell Commun Signal, 3, 12 (on-line jounal).PubMedCrossRefGoogle Scholar
  6. 6.
    Katoh, M., & Katoh, M. (2007). STAT3-induced WNT5A signaling loop in embryonic stem cells, adult normal tissues, chronic persistent inflammation, rheumatoid arthritis, and cancer. International Journal of Molecular Medicine, 19, 273–278.PubMedGoogle Scholar
  7. 7.
    Katoh, M., & Katoh, M. (2006). Crosstalk of WNT and FGF signaling pathways at GSK3β to regulate β-catenin and SNAIL signaling cascades. Cancer Biology & Therapy, 5, 1059–1064.Google Scholar
  8. 8.
    Saitoh, T., & Katoh, M. (2001). Expression profiles of βTRCP1 and βTRCP2, and mutation analysis of βTRCP2 in gastric cancer. International Journal of Oncology, 18, 959–964.PubMedGoogle Scholar
  9. 9.
    Spiegelman, V. S., Tang, W., Katoh, M., Slaga, T. J., & Fuchs, S. Y. (2002). Inhibition of HOS expression and activities by Wnt pathway. Oncogene, 21, 856–860.PubMedCrossRefGoogle Scholar
  10. 10.
    Spiegelman, V. S., Tang, W., Chan, A. M., Igarashi, M., Aaronson, S. A., Sassoon, D. A., et al. (2002). Induction of homologue of Slimb ubiquitin ligase receptor by mitogen signaling. Journal of Biological Chemistry, 277, 36624–36630.PubMedCrossRefGoogle Scholar
  11. 11.
    Katoh, M. (2005). WNT/PCP signaling pathway and human cancer. Oncology Reports, 14, 1583–1588.PubMedGoogle Scholar
  12. 12.
    Katoh, M., Hirai, M., Sugimura, T., & Terada, M. (1996). Cloning, expression and chromosomal localization of WNT13, a novel member of the WNT gene family. Oncogene, 13, 873–876.PubMedGoogle Scholar
  13. 13.
    Katoh, M., Kirikoshi, H., Saitoh, T., Sagara, N., & Koike, J. (2000). Alternative splicing of the WNT2B/WNT13 gene. Biochemical and Biophysical Research Communications, 275, 209–216.PubMedCrossRefGoogle Scholar
  14. 14.
    Katoh, M. (2002). Molecular cloning and characterization of ST7R (ST7-like, ST7L) on human chromosome 1p13, a novel gene homologous to tumor suppressor gene ST7 on human chromosome 7q31. International Journal of Oncology, 20, 1247–1253.PubMedGoogle Scholar
  15. 15.
    Katoh, M. (2005). WNT2B: Comparative integromics and clinical application. International Journal of Molecular Medicine, 16, 1103–1108.PubMedGoogle Scholar
  16. 16.
    Katoh, M., Kirikoshi, H., Terasaki, H., & Shiokawa, K. (2001). WNT2B2 mRNA, up-regulated in primary gastric cancer, is a positive regulator of the WNT–β-catenin–TCF signaling pathway. Biochemical and Biophysical Research Communications, 289, 1093–1098.PubMedCrossRefGoogle Scholar
  17. 17.
    Katoh, M. (2001). Molecular cloning and characterization of human WNT3. International Journal of Oncology, 19, 977–982.PubMedGoogle Scholar
  18. 18.
    Katoh, M. (2002). Regulation of WNT3 and WNT3A mRNAs in human cancer cell lines NT2, MCF-7, and MKN45. International Journal of Oncology, 20, 373–377.PubMedGoogle Scholar
  19. 19.
    Saitoh, T., Hirai, M., & Katoh, M. (2001). Molecular cloning and characterization of WNT3A and WNT14 clustered in human chromosome 1q42 region. Biochemical and Biophysical Research Communications, 284, 1168–1175.PubMedCrossRefGoogle Scholar
  20. 20.
    Saitoh, T., & Katoh, M. (2001). Molecular cloning and characterization of human WNT5B on chromosome 12p13.3 region. International Journal of Oncology, 19, 347–351.PubMedGoogle Scholar
  21. 21.
    Saitoh, T., & Katoh, M. (2002). Expression and regulation of WNT5A and WNT5B in human cancer: Up-regulation of WNT5A by TNFα in MKN45 cells and down-regulation of WNT5B by β-estradiol in MCF-7 cells. International Journal of Molecular Medicine, 10, 345–349.PubMedGoogle Scholar
  22. 22.
    Kirikoshi, H., Sekihara, H., & Katoh, M. (2001). WNT10A and WNT6, clustered in human chromosome 2q35 region with head-to-tail manner, are strongly co-expressed in SW480 cells. Biochemical and Biophysical Research Communications, 283, 798–805.PubMedCrossRefGoogle Scholar
  23. 23.
    Kirikoshi, H., Sekihara, H., & Katoh, M. (2001). Molecular cloning and characterization of human WNT7B. International Journal of Oncology, 19, 779–783.PubMedGoogle Scholar
  24. 24.
    Kirikoshi, H., & Katoh, M. (2002). Expression of WNT7A in human normal tissues and cancer, and regulation of WNT7A and WNT7B in human cancer. International Journal of Oncology, 21, 895–900.PubMedGoogle Scholar
  25. 25.
    Saitoh, T., & Katoh, M. (2001). Molecular cloning and characterization of human WNT8A. International Journal of Oncology, 19, 123–127.PubMedGoogle Scholar
  26. 26.
    Saitoh, T., Mine, T., & Katoh, M. (2002). Expression and regulation of WNT8A and WNT8B mRNAs in human tumor cell lines: Up-regulation of WNT8B mRNA by β-estradiol in MCF-7 cells, and down-regulation of WNT8A and WNT8B mRNAs by retinoic acid in NT2 cells. International Journal of Oncology, 20, 999–1003.PubMedGoogle Scholar
  27. 27.
    Saitoh, T., Mine, T., & Katoh, M. (2002). Up-regulation of WNT8B mRNA in human gastric cancer. International Journal of Oncology, 20, 343–348.PubMedGoogle Scholar
  28. 28.
    Kirikoshi, H., Sekihara, H., & Katoh, M. (2001). Expression of WNT14 and WNT14B mRNAs in human cancer, up-regulation of WNT14 by IFNγ and up-regulation of WNT14B by β-estradiol. International Journal of Oncology, 19, 1221–1225.PubMedGoogle Scholar
  29. 29.
    Kirikoshi, H., Sekihara, H., & Katoh, M. (2001). Molecular cloning and characterization of WNT14B, a novel member of the WNT gene family. International Journal of Oncology, 19, 947–952.PubMedGoogle Scholar
  30. 30.
    Kirikoshi, H., Sekihara, H., & Katoh, M. (2001). Up-regulation of WNT10A by tumor necrosis factor α and Helicobacter pylori in gastric cancer. International Journal of Oncology, 19, 533–536.PubMedGoogle Scholar
  31. 31.
    Kirikoshi, H., Inoue, S., Sekihara, H., & Katoh, M. (2001). Expression of WNT10A in human cancer. International Journal of Oncology, 19, 997–1001.PubMedGoogle Scholar
  32. 32.
    Saitoh, T., Kirikoshi, H., Mine, T., & Katoh, M. (2001). Proto-oncogene WNT10B is up-regulated by tumor necrosis factor α in human gastric cancer cell line MKN45. International Journal of Oncology, 19, 1187–1192.PubMedGoogle Scholar
  33. 33.
    Kirikoshi, H., & Katoh, M. (2002). Expression and regulation of WNT10B in human cancer: Up-regulation of WNT10B in MCF-7 cells by β-estradiol and down-regulation of WNT10B in NT2 cells by retinoic acid. International Journal of Molecular Medicine, 10, 507–511.PubMedGoogle Scholar
  34. 34.
    Kirikoshi, H., Sekihara, H., & Katoh, M. (2001). Molecular cloning and characterization of human WNT11. International Journal of Molecular Medicine, 8, 651–656.PubMedGoogle Scholar
  35. 35.
    Sagara, N., Toda, G., Hirai, M., Terada, M., & Katoh, M. (1998). Molecular cloning, differential expression, and chromosomal localization of human Frizzled-1, Frizzled-2, and Frizzled-7. Biochemical and Biophysical Research Communications, 252, 117–122.PubMedCrossRefGoogle Scholar
  36. 36.
    Kirikoshi, H., Koike, J., Sagara, N., Saitoh, T., Tokuhara, M., Tanaka, K., et al. (2000). Molecular cloning and genomic structure of human Frizzled-3 at chromosome 8p21. Biochemical and Biophysical Research Communications, 271, 8–14.PubMedCrossRefGoogle Scholar
  37. 37.
    Kirikoshi, H., Sagara, N., Koike, J., Tanaka, K., Sekihara, H., Hirai, M., et al. (1999). Molecular cloning and characterization of human Frizzled-4 on chromosome 11q14–q21. Biochemical and Biophysical Research Communications, 264, 955–961.PubMedCrossRefGoogle Scholar
  38. 38.
    Sagara, N., Kirikoshi, H., Terasaki, H., Yasuhiko, Y., Toda, G., Shiokawa, K., et al. (2001). FZD4S, a splicing variant of Frizzled-4, encodes a soluble-type positive regulator of the WNT signaling pathway. Biochemical and Biophysical Research Communications, 282, 750–756.PubMedCrossRefGoogle Scholar
  39. 39.
    Saitoh, T., Hirai, M., & Katoh, M. (2001). Molecular cloning and characterization of human Frizzled-5 gene on chromosome 2q33.3–q34 region. International Journal of Oncology, 19, 105–110.PubMedGoogle Scholar
  40. 40.
    Tokuhara, M., Hirai, M., Atomi, Y., Terada, M., & Katoh, M. (1998). Molecular cloning of human Frizzled-6. Biochemical and Biophysical Research Communications, 243, 622–627.PubMedCrossRefGoogle Scholar
  41. 41.
    Kirikoshi, H., Sekihara, H., & Katoh, M. (2001). Up-regulation of Frizzled-7 (FZD7) in human gastric cancer. International Journal of Oncology, 19, 111–115.PubMedGoogle Scholar
  42. 42.
    Saitoh, T., Hirai, M., & Katoh, M. (2001). Molecular cloning and characterization of human Frizzled-8 gene on chromosome 10p11.2. International Journal of Oncology, 18, 991–996.PubMedGoogle Scholar
  43. 43.
    Koike, J., Takagi, A., Miwa, T., Hirai, M., Terada, M., & Katoh, M. (1999). Molecular cloning of Frizzled-10, a novel member of the Frizzled gene family. Biochemical and Biophysical Research Communications, 262, 39–43.PubMedCrossRefGoogle Scholar
  44. 44.
    Terasaki, H., Saitoh, T., Shiokawa, K., & Katoh, M. (2002). Frizzled-10, up-regulated in primary colorectal cancer, is a positive regulator of the WNT–β-catenin–TCF signaling pathway. International Journal of Molecular Medicine, 9, 107–112.PubMedGoogle Scholar
  45. 45.
    Saitoh, T., Mine, T., & Katoh, M. (2002). Up-regulation of Frizzled-10 (FZD10) by β-estradiol in MCF-7 cells and by retinoic acid in NT2 cells. International Journal of Oncology, 20, 117–120.PubMedGoogle Scholar
  46. 46.
    Kirikoshi, H., Sekihara, H., & Katoh, M. (2001). Expression profiles of 10 members of Frizzled gene family in human gastric cancer. International Journal of Oncology, 19, 767–771.PubMedGoogle Scholar
  47. 47.
    Saitoh, T., Mine, T., & Katoh, M. (2002). Molecular cloning and expression of proto-oncogene FRAT1 in human cancer. International Journal of Oncology, 20, 785–789.PubMedGoogle Scholar
  48. 48.
    Saitoh, T., & Katoh, M. (2001). FRAT1 and FRAT2, clustered in human chromosome 10q24.1 region, are up-regulated in gastric cancer. International Journal of Oncology, 19, 311–315.PubMedGoogle Scholar
  49. 49.
    Saitoh, T., Moriwaki, J., Koike, J., Takagi, A., Miwa, T., Shiokawa, K., et al. (2001). Molecular cloning and characterization of FRAT2, encoding a positive regulator of the WNT signaling pathway. Biochemical and Biophysical Research Communications, 281, 815–820.PubMedCrossRefGoogle Scholar
  50. 50.
    Katoh, M. (2001). Molecular cloning, gene structure, and expression analyses of NKD1 and NKD2. International Journal of Oncology, 19, 963–969.PubMedGoogle Scholar
  51. 51.
    Katoh, M. (2002). Molecular cloning and characterization of Strabismus 2 (STB2). International Journal of Oncology, 20, 993–998.PubMedGoogle Scholar
  52. 52.
    Kirikoshi, H., & Katoh, M. (2002). Expression of WRCH1 in human cancer and down-regulation of WRCH1 by β-estradiol in MCF-7 cells. International Journal of Oncology, 20, 777–783.PubMedGoogle Scholar
  53. 53.
    Katoh, M. (2002). Molecular cloning and characterization of WRCH2 on human chromosome 15q15. International Journal of Oncology, 20, 977–982.PubMedGoogle Scholar
  54. 54.
    Kirikoshi, H., & Katoh, M. (2002). Molecular cloning and characterization of human GIPC2, a novel gene homologous to human GIPC1 and Xenopus Kermit. International Journal of Oncology, 20, 571–576.PubMedGoogle Scholar
  55. 55.
    Kirikoshi, H., & Katoh, M. (2002). Up-regulation of GIPC2 in human gastric cancer. International Journal of Oncology, 20, 1183–1187.PubMedGoogle Scholar
  56. 56.
    Saitoh, T., Mine, T., & Katoh, M. (2002). Molecular cloning and characterization of human GIPC3, a novel gene homologous to human GIPC1 and GIPC2. International Journal of Oncology, 20, 577–582.PubMedGoogle Scholar
  57. 57.
    Koike, J., Sagara, N., Kirikoshi, H., Takagi, A., Miwa, T., Hirai, M., et al. (2000). Molecular cloning and genomic structure of the βTRCP2 gene on chromosome 5q35.1. Biochemical and Biophysical Research Communications, 269, 103–109.PubMedCrossRefGoogle Scholar
  58. 58.
    Katoh, M. (2002). Molecular cloning and characterization of human SOX17. International Journal of Molecular Medicine, 9, 153–157.PubMedGoogle Scholar
  59. 59.
    Sagara, N., & Katoh, M. (2000). Mitomycin C resistance induced by TCF-3 overexpression in gastric cancer cell line MKN28 is associated with DT-diaphorase down-regulation. Cancer Research, 60, 5959–5962.PubMedGoogle Scholar
  60. 60.
    Katoh, M., & Katoh, M. (2003). Identification and characterization of human DAAM2 gene in silico. International Journal of Oncology, 22, 915–920.PubMedGoogle Scholar
  61. 61.
    Katoh, M., & Katoh, M. (2003). Identification and characterization of human PRICKLE1 and PRICKLE2 genes as well as mouse Prickle1 and Prickle2 genes homologous to Drosophila tissue polarity gene prickle. International Journal of Molecular Medicine, 11, 249–256.PubMedGoogle Scholar
  62. 62.
    Katoh, M., & Katoh, M. (2003). Identification and characterization of human DAPPER1 and DAPPER2 genes in silico. International Journal of Oncology, 22, 907–913.PubMedGoogle Scholar
  63. 63.
    Katoh, M., & Katoh, M. (2003). Identification and characterization of human BCL9L gene and mouse Bcl9l gene in silico. International Journal of Molecular Medicine, 12, 643–649.PubMedGoogle Scholar
  64. 64.
    Katoh, M. (2001). Frequent up-regulation of WNT2 in primary gastric cancer and colorectal cancer. International Journal of Oncology, 19, 1003–1007.PubMedGoogle Scholar
  65. 65.
    Saitoh, T., Mine, T., & Katoh, M. (2002). Frequent up-regulation of WNT5A mRNA in primary gastric cancer. International Journal of Molecular Medicine, 9, 515–519.PubMedGoogle Scholar
  66. 66.
    Katoh, M., & Terada, M. (1993). Oncogenes and tumor suppressor genes. In M. Nishi (Ed.), Gastric cancer (pp. 196–208). Tokyo: Spinger-Verlag.Google Scholar
  67. 67.
    Marshall, B. J., & Warren, J. R. (1984). Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet, 1, 1311–1315.PubMedCrossRefGoogle Scholar
  68. 68.
    Crabtree, J. E., Shallcross, T. M., Heatley, R. V., & Wyatt, J. I. (1991). Mucosal tumour necrosis factor α and interleukin-6 in patients with Helicobacter pylori associated gastritis. Gut, 32, 1473–1477.PubMedGoogle Scholar
  69. 69.
    Peek Jr., R. M., & Crabtree, J. E. (2006). Helicobacter infection and gastric neoplasia. Journal of Pathology, 208, 233–248.PubMedCrossRefGoogle Scholar
  70. 70.
    Eswarakumar, V. P., Lax, I., & Schlessinger, J. (2005). Cellular signaling by fibroblast growth factor receptors. Cytokine & Growth Factor Reviews, 16, 139–149.CrossRefGoogle Scholar
  71. 71.
    Katoh, M. (2005). Epithelial–mesenchymal transition in gastric cancer. International Journal of Oncology, 27, 1677–1683.PubMedGoogle Scholar
  72. 72.
    Katoh, M., & Katoh, M. (2006). FGF signaling network in the gastrointestinal tract. International Journal of Oncology, 29, 163–168.PubMedGoogle Scholar
  73. 73.
    Radtke, F., & Raj, K. (2003). The role of Notch in tumorigenesis: Oncogene or tumor suppressor? Nature Reviews. Cancer, 3, 765–767.CrossRefGoogle Scholar
  74. 74.
    Katoh, M., & Katoh, M. (2007). Notch signaling in the gastrointestinal tract. International Journal of Oncology, 30, 247–251.PubMedGoogle Scholar
  75. 75.
    Katoh, Y., & Katoh, M. (2006). Comparative integromics on BMP/GDF family. International Journal of Molecular Medicine, 17, 951–955.PubMedGoogle Scholar
  76. 76.
    Katoh, Y., & Katoh, M. (2006). Hedgehog signaling pathway and gastrointestinal stem cell signaling network. International Journal of Molecular Medicine, 18, 1019–1023.PubMedGoogle Scholar
  77. 77.
    Lum, L., & Beachy, P. A. (2004). The Hedgehog response network: Sensors, switches, and routers. Science, 304, 1755–1759.PubMedCrossRefGoogle Scholar
  78. 78.
    Katoh, Y., & Katoh, M. (2005). Hedgehog signaling in gastric cancer. Cancer Biology & Therapy, 4, 1050–1054.CrossRefGoogle Scholar
  79. 79.
    Katoh, Y., & Katoh, M. (2006). WNT antagonist, SFRP1, is Hedgehog signaling target. International Journal of Molecular Medicine, 17, 171–175.PubMedGoogle Scholar
  80. 80.
    Radtke, F., Clevers, H., & Riccio, O. (2006). From gut homoestasis to cancer. Current Molecular Medicine, 6, 275–289.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  1. 1.Genetics and Cell Biology SectionNational Cancer Center Research InstituteTokyoJapan

Personalised recommendations