Skip to main content

Advertisement

Log in

Amnion-derived pluripotent/multipotent stem cells

  • Original Article
  • Published:
Stem Cell Reviews Aims and scope Submit manuscript

Abstract

Amniotic epithelium is derived from the epiblast by approx 8 d after fertilization. Other parts of the placenta are derived from extraembryonic tissue. In addition to this developmental difference, amniotic epithelial (AE) cells are known to have unique characteristics, such as low level expression of major histocompatibility complex antigens, and a less restricted differentiation potential. The differentiation of the AE cells to the neural lineage is well documented. Recently, we reported that AE cells from term placenta express several stem cell surface markers that are commonly found on pluripotent stem cells such as embryonic stem cells, and that in culture, AE cells differentiate into cell types from all three germ layers. In this review, we describe the unique characteristics of the AE stem cells and summarize previous work concerning the stem cell nature of cells from amnion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoyes AD. J Obstet Gynaecol Br Commonw 1968;75(20):164–171.

    PubMed  CAS  Google Scholar 

  2. Klinger HP, Schwarzacher HG. Nature 1958;181(4616): 1150–1152.

    Article  PubMed  CAS  Google Scholar 

  3. Terada S, Matsuura K, Enosawa S, et al. Cell Transplant 2000;9(5):701–704.

    PubMed  CAS  Google Scholar 

  4. Xu RH, Chen X, Li DS, et al. Nat Biotechnol 2002;20(12): 1251–1264.

    Article  CAS  Google Scholar 

  5. Klassen H, Ziaeian B, Kirov II, Young MJ, Schwartz PH. J Neurosci Res 2004;77(3):334–343.

    Article  PubMed  CAS  Google Scholar 

  6. Schwartz PH, Bryant PJ, Fuja TJ, Su H, O'Dowd DK, Klassen H. J Neurosci Res 2003;74(6):838–851.

    Article  PubMed  CAS  Google Scholar 

  7. Henderson JK, Draper JS, Baillie HS, et al. Stem Cells 2002;20(4):329–337.

    Article  PubMed  CAS  Google Scholar 

  8. Zhou S, Schuetz JD, Bunting KD, et al. Nat Med 2001; 7(9):1028–1034.

    Article  PubMed  CAS  Google Scholar 

  9. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. J Exp Med 1996;183(4):1797–1806.

    Article  PubMed  CAS  Google Scholar 

  10. Terskikh AV, Easterday MC, Li L, et al. Proc Natl Acad Sci USA 2001;98(14):7934–7939.

    Article  PubMed  CAS  Google Scholar 

  11. Asakura A, Rudnicki MA. Exp Hematol 202;30(11):1339–1345.

  12. Sakuragawa N. US Pregnant Abst 2 00500895132004;919310(10).

  13. Brivanlou AH, Gage FH, Jaenisch R, Jessell T, Melton D, Rossant J. Stem cells Sci 2003;300(5621):913–916.

    CAS  Google Scholar 

  14. Chambers I, Colby D, Robertson M, et al. Cell 2003;113(5): 643–655.

    Article  PubMed  CAS  Google Scholar 

  15. Scholer HR, Ruppert S, Suzuki N, Chodhury K, Gruss P. Nature 1990;344(6265):435–439.

    Article  PubMed  CAS  Google Scholar 

  16. Rosner MH, Vigano MA, Ozato K, et al. Nature 190;345(6277): 686–692.

  17. Pesce M, Wang X, Wolgemuth DJ, Scholer H. Mech Dev 1998;71(1–2):89–98.

    Article  PubMed  CAS  Google Scholar 

  18. Pesce M, Scholer HR. Stem Cells 2001;19(4):271–278.

    Article  PubMed  CAS  Google Scholar 

  19. Niwa H. Cell Struct Funct 2001;26(3):137–138.

    Article  PubMed  CAS  Google Scholar 

  20. Hattori N, Nishino K, Ko YG, et al. J Biol Chem 2004;279(17): 17,063–17,069.

    Article  CAS  Google Scholar 

  21. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Nature 2002; 418(6893):41–49.

    Article  PubMed  CAS  Google Scholar 

  22. Tamagawa T, Ishiwata I, Saito S. Hum Cell 2004;17(3):125–130.

    Article  PubMed  Google Scholar 

  23. Miki T, Lehmann T, Cai H, Stolz DB, Strom SC. Stem Cells 2005;23(10):1549–1559.

    Article  PubMed  CAS  Google Scholar 

  24. Miyamoto K, Hayashi K, Suzuki T, et al. Stem cells 2004; 22(4):433–440.

    Article  PubMed  Google Scholar 

  25. Miki T, Mitamura K, Ross M, Stolz DB, Strom SC. Localization of stem cell marker positive cells in human term placentae. 2006, (Submitted).

  26. Sakuragawa N, Thangavel R, Mizuguchi M, Hirasawa M, Kamo I. Neurosci Lett 1996;209(1):9–12.

    Article  PubMed  CAS  Google Scholar 

  27. Sakuragawa N, Misawa H, Ohsugi K, et al. Neurosci Lett 1997;232(1):53–56.

    Article  PubMed  CAS  Google Scholar 

  28. Elwan MA, Sakuragawa N. Neuroreport 1997;232(1):53–56.

    Google Scholar 

  29. Kakishita K, Elwan MA, Nakao N, Itakura T, Sakuragawa N. Exp Neurol 2000;165(1):27–34.

    Article  PubMed  CAS  Google Scholar 

  30. Kakishita K, Nakao N, Sakuragawa N, Itakura T. Brain Res 2003;980(1):48–56.

    Article  PubMed  CAS  Google Scholar 

  31. Sakuragawa N, Enosawa S, Ishii T, et al. J Hum Genet 2000;45(3): 171–176.

    Article  PubMed  CAS  Google Scholar 

  32. Nakajima T, Enosawa S, Mitani T, et al. Cell Transplant 2003;12(5): 545–552.

    Google Scholar 

  33. Takashima S, Ise H, Zhao P, Akaike T, Nikaido T. Cell Struct Funct 2004;29(3):73–84.

    Article  PubMed  CAS  Google Scholar 

  34. Wei JP, Zhang TS, Kawa S, et al. Cell Transplant 2003; 12(5):545–552.

    PubMed  Google Scholar 

  35. Takahashi T, Lord B, Schulze PC, et al. Circulation 2003;107(14): 1912–1916.

    Article  PubMed  CAS  Google Scholar 

  36. Carlson BM. Human embryol & development biology. Mosby, Inc; 1999.

  37. Moro L, Venturino M, Bozzo C, et al. EMBO J 1998;17(22):6622–6632.

    Article  PubMed  CAS  Google Scholar 

  38. Schlaepfer DD, Hunter T. Mol Cell Biol 1996;16(10):6623–5633.

    Google Scholar 

  39. Mosquera A, Fernandez JL, Campos A, Goyanes VJ, Ramiro-Diaz J, Gosalvez J. J Med Genet 1999;36(6):494–496.

    PubMed  CAS  Google Scholar 

  40. Chen W. J Med Genet 1982;19(6):433–436.

    Article  PubMed  CAS  Google Scholar 

  41. Scaggiante B, Pineschi A, Sustersich M, Andolina M, Agosti E, Transplantation 1987;44(1):59–61.

    Article  PubMed  CAS  Google Scholar 

  42. Sakuragawa N, Yoshikawa H, Sasaki M. Brain Dev 1992;4(1):7–11.

    Google Scholar 

  43. Akle CA, Adinolfi M, Welsh KI, Leibowitz S, McColl I. Lancet 1981;2(8254):1003–1005.

    Article  PubMed  CAS  Google Scholar 

  44. Davila JC, Cezar GG, Thiede M, Strom S, Miki T, Trosko J. Toxicol Sci 2004;79(2):214–223.

    Article  PubMed  CAS  Google Scholar 

  45. Dua HS, Gomes JA, King AJ, Maharajan VS. Surv Ophthalmol 2004;49(1):51–77.

    Article  PubMed  Google Scholar 

  46. Gomes JA, Romano A, Santos MS, Dua HS. Curr Opin Ophthalmol 2005;16(4):233–240.

    Article  PubMed  Google Scholar 

  47. Adinolfi M, Akle CA, McCol I, et al. Nature 1982;295(5847): 325–327.

    Article  PubMed  CAS  Google Scholar 

  48. Sakuragawa N, Tohyama J, Yamamoto H. Cell Transplant 1995;4(3):343–346.

    Article  PubMed  CAS  Google Scholar 

  49. Zipor D. Stem cells 2005;23(6):719–726.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Strom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miki, T., Strom, S.C. Amnion-derived pluripotent/multipotent stem cells. Stem Cell Rev 2, 133–141 (2006). https://doi.org/10.1007/s12015-006-0020-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-006-0020-0

Index Entries

Navigation