Skip to main content
Log in

Embryonic stem cell technology

Applications and uses in functional genomic studies

  • Original Article
  • Published:
Stem Cell Reviews Aims and scope Submit manuscript

Abstract

In this postgenomic era, the role of functional genomics is becoming increasingly important and playing a key role in this field are embryonic stem cells. These cells are capable of proliferating indefinitely in a pluripotent state and have the potential to differentiate into all somatic cell types. Through a combination of their ease of genetic manipulation and directed in vitro differentiation they have proved themselves to be an extremely valuable tool in functional genomics. Here, some of their applications in functional genomic studies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blattner FR, Plunkett III G, Bloch CA, et al. Science 1997;277: 1453–1474

    Article  PubMed  CAS  Google Scholar 

  2. Mewes HW, Albermann K, Bahr M. Nature 1997;387:7–65.

    Article  PubMed  Google Scholar 

  3. International Human Genome Sequencing Consortium. Nature 2004;431:931–945.

    Article  Google Scholar 

  4. Sargent TD, Dawid IB. Science 1983;222:135–139.

    Article  PubMed  CAS  Google Scholar 

  5. Hedrick SM, Nielsen EA, Kavaler J, Cohen DI, Davis MM. Nature 1984;308:153–158.

    Article  PubMed  CAS  Google Scholar 

  6. Diatchenko L, Lau YF, Campbell AP, et al. Proc Natl Acad Sci USA 1996;93:6025–6030

    Article  PubMed  CAS  Google Scholar 

  7. Martin G. Proc Natl Acad Sci USA 1981;78:7634–7638.

    Article  PubMed  CAS  Google Scholar 

  8. Evans M, Kaufman MH. Nature 1981;292:154–156.

    Article  PubMed  CAS  Google Scholar 

  9. Smith AG, Hooper ML. Dev Biol 1987;12:1–9.

    Article  CAS  Google Scholar 

  10. Smith A, Heath JK, Donaldson DD, et al. Nature 1988;336: 688–690.

    Article  PubMed  CAS  Google Scholar 

  11. Williams RL, Hilton DJ, Pease S, et al. Nature 1988;336:684–687.

    Article  PubMed  CAS  Google Scholar 

  12. Ying Q-L, Nichols J, Chambers I, Smith A. Cell 2003;115:281–292.

    Article  PubMed  CAS  Google Scholar 

  13. Gorba T, Allsopp TE. Pharma Res 2003;47:269–278.

    Article  CAS  Google Scholar 

  14. Thomas KR, Capecchi MR. Cell 1987;51:503–512.

    Article  PubMed  CAS  Google Scholar 

  15. Metzler M, Chen N, Helgason CD, et al. J Neurochem 1999;72: 1009–1018.

    Article  PubMed  CAS  Google Scholar 

  16. Bradley A, Evans M, Kaufman M, Robertson E. Nature 1984;309: 255–256.

    Article  PubMed  CAS  Google Scholar 

  17. Robertson E, Gregg RG, Boggs SS, Koralewski M, Kucherlapati RS. Nature 1985;317:230–234.

    Article  Google Scholar 

  18. Smithies O, Gregg RG, Boggs SS, Koralewski M, Kucherlapati RS. Nature 1985;317:230–234.

    Article  PubMed  CAS  Google Scholar 

  19. Sternberg N, Hamilton D. J Mol Biol 1981;150:467–486.

    Article  PubMed  CAS  Google Scholar 

  20. Chambers C. BioEssays 1994;16:865–868.

    Article  PubMed  CAS  Google Scholar 

  21. St-Onge L, Furth P, Gruss P. NAR 1996;24:3875–3877.

    Article  PubMed  CAS  Google Scholar 

  22. Kuhn R, Schwenk F, Aguet M, Rajewsky K. Science 1995;268: 1427–1429.

    Article  Google Scholar 

  23. Danielian P, Muccino D, Rowitch D, Michael S, McMahon A. Curr Biol 1998;8:1323–1326.

    Article  PubMed  CAS  Google Scholar 

  24. Zwaka T, Thomson J. Nat Biotechnol 2003;21:319–321.

    Article  PubMed  CAS  Google Scholar 

  25. Lawson KA, Meneses JJ, Pedersen RA. Development 1991;113:891–911.

    PubMed  CAS  Google Scholar 

  26. Gorski JA, Talley T, Qiu M, Puelles L, Rubenstein JL, Jones KR. J Neurosci 2002;22:6309–6314.

    PubMed  CAS  Google Scholar 

  27. Constien R, Forde A, Liliensiek B, et al. Genesis 2001;30:36–44.

    Article  PubMed  CAS  Google Scholar 

  28. Jiang X, Rowitch DH, Soriano P, McMahon AP, Sucov HM. Development 2000;127:1607–1616.

    PubMed  CAS  Google Scholar 

  29. Chai Y, Jiang X, Ito Y, et al. Development 2000;127:1671–1679.

    PubMed  CAS  Google Scholar 

  30. Evans MJ, Carlton MB, Russ AP. Trends Genet 1997;13:370–374.

    Article  PubMed  CAS  Google Scholar 

  31. Gassmann M, Donoho G, Berg P. Proc Natl Acad Sci USA 1995; 92:1292–1296.

    Article  PubMed  CAS  Google Scholar 

  32. Aubert J, Dunstan H, Chambers I, Smith A. Nat Biotechnol 2002; 20:1240–1245.

    Article  PubMed  CAS  Google Scholar 

  33. Chambers I, Colby D, Robertson M, et al. Cell 2003;113:643–655.

    Article  PubMed  CAS  Google Scholar 

  34. Mitsui K, Tokuzawa Y, Itoh H, et al. Cell 2003;113:631–642.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruairi Friel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friel, R., Fisher, D. & Hook, L. Embryonic stem cell technology. Stem Cell Rev 2, 31–35 (2006). https://doi.org/10.1007/s12015-006-0006-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-006-0006-y

Index Entries

Navigation