Skip to main content
Log in

Pseudomonas aeruginosa N-3-Oxododecanoyl Homoserine Lactone Disrupts Endothelial Integrity by Activating the Angiopoietin-Tie System

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The activation of the angiopoietin (Angpt)-Tie system is linked to endothelial dysfunction during sepsis. Bacterial quorum-sensing molecules function as pathogen-associated molecular patterns. However, their impact on the endothelium and the Angpt-Tie system remains unclear. Therefore, this study investigated whether treatment with N-3-oxododecanoyl homoserine lactone (3OC12-HSL), a quorum-sensing molecule derived from Pseudomonas aeruginosa, impaired endothelial function in human umbilical vein endothelial cells. 3OC12-HSL treatment impaired tube formation even at sublethal concentrations, and immunocytochemistry analysis revealed that it seemed to reduce vascular endothelial-cadherin expression at the cell−cell interface. Upon assessing the mRNA expression patterns of genes associated with the Angpt-Tie axis, the expressions of Angpt2, Forkhead box protein O1, Tie1, and vascular endothelial growth factor 2 were found to be upregulated in the 3OC12-HSL-treated cells. Moreover, western blot analysis revealed that 3OC12-HSL treatment increased Angpt2 expression. A co-immunoprecipitation assay was conducted to assess the effect of 3OC12-HSL on the IQ motif containing GTPase activating protein 1 (IQGAP1) and Rac1 complex and the interaction between these proteins was consistently maintained regardless of 3OC12-HSL treatment. Next, recombinant human (rh)-Angpt1 was added to assess whether it modulated the effects of 3OC12-HSL treatment. rh-Angpt1 addition increased cellular viability, improved endothelial function, and reversed the overall patterns of mRNA and protein expression in endothelial cells treated with 3OC12-HSL. Additionally, it was related to the increased expression of phospho-Akt and the IQGAP1 and Rac1 complex. Collectively, our findings indicated that 3OC12-HSL from Pseudomonas aeruginosa can impair endothelial integrity via the activation of the Angpt-Tie axis, which appeared to be reversed by rh-Angpt1 treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Singer, M., Deutschman, C. S., & Seymour, C. W., et al. (2016). The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315(8), 801–810. https://doi.org/10.1001/jama.2016.0287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Blanco, J., Muriel-Bombin, A., & Sagredo, V., et al. (2008). Incidence, organ dysfunction and mortality in severe sepsis: a Spanish multicentre study. Critical Care, 12(6), R158 https://doi.org/10.1186/cc7157.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sakr, Y., Lobo, S. M., & Moreno, R. P., et al. (2012). Patterns and early evolution of organ failure in the intensive care unit and their relation to outcome. Critical Care, 16(6), R222. https://doi.org/10.1186/cc11868.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ince, C., Mayeux, P. R., & Nguyen, T., et al. (2016). The endothelium in Sepsis. Shock, 45(3), 259–270. https://doi.org/10.1097/SHK.0000000000000473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lelubre, C., & Vincent, J. L. (2018). Mechanisms and treatment of organ failure in sepsis. Nature Reviews Nephrology, 14(7), 417–427. https://doi.org/10.1038/s41581-018-0005-7.

    Article  PubMed  Google Scholar 

  6. Koh, G. Y. (2013). Orchestral actions of angiopoietin-1 in vascular regeneration. Trends in Molecular Medicine, 19(1), 31–39. https://doi.org/10.1016/j.molmed.2012.10.010.

    Article  CAS  PubMed  Google Scholar 

  7. Kim, I., Kim, H. G., So, J. N., Kim, J. H., Kwak, H. J., & Koh, G. Y. (2000). Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3’-Kinase/Akt signal transduction pathway. Circulation Research, 86(1), 24–29. https://doi.org/10.1161/01.res.86.1.24.

    Article  CAS  PubMed  Google Scholar 

  8. Kontos, C. D., Cha, E. H., York, J. D., & Peters, K. G. (2002). The endothelial receptor tyrosine kinase Tie1 activates phosphatidylinositol 3-kinase and Akt to inhibit apoptosis. Molecular and Cellular Biology, 22(6), 1704–1713. https://doi.org/10.1128/MCB.22.6.1704-1713.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Daly, C., Wong, V., & Burova, E., et al. (2004). Angiopoietin-1 modulates endothelial cell function and gene expression via the transcription factor FKHR (FOXO1). Genes Development, 18(9), 1060–1071. https://doi.org/10.1101/gad.1189704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gavard, J., Patel, V., & Gutkind, J. S. (2008). Angiopoietin-1 prevents VEGF-induced endothelial permeability by sequestering Src through mDia. Developmental Cells, 14(1), 25–36. https://doi.org/10.1016/j.devcel.2007.10.019.

    Article  CAS  Google Scholar 

  11. Maisonpierre, P. C., Suri, C., & Jones, P. F., et al. (1997). Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science, 277(5322), 55–60. https://doi.org/10.1126/science.277.5322.55.

    Article  CAS  PubMed  Google Scholar 

  12. Saharinen, P., Eklund, L., & Alitalo, K. (2017). Therapeutic targeting of the angiopoietin-TIE pathway. Nature Reviews Drug Discovery, 16(9), 635–661. https://doi.org/10.1038/nrd.2016.278.

    Article  CAS  PubMed  Google Scholar 

  13. Parikh, S. M., Mammoto, T., & Schultz, A., et al. (2006). Excess circulating angiopoietin-2 may contribute to pulmonary vascular leak in sepsis in humans. PLoS Medicine, 3(3), e46. https://doi.org/10.1371/journal.pmed.0030046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. David, S., Mukherjee, A., & Ghosh, C. C., et al. (2012). Angiopoietin-2 may contribute to multiple organ dysfunction and death in sepsis. Critical Care Medicine, 40(11), 3034–3041. https://doi.org/10.1097/CCM.0b013e31825fdc31.

    Article  CAS  PubMed  Google Scholar 

  15. Lymperopoulou, K., Velissaris, D., & Kotsaki, A., et al. (2015). Angiopoietin-2 associations with the underlying infection and sepsis severity. Cytokine, 73(1), 163–168. https://doi.org/10.1016/j.cyto.2015.01.022.

    Article  CAS  PubMed  Google Scholar 

  16. Fang, Y., Li, C., Shao, R., Yu, H., Zhang, Q., & Zhao, L. (2015). Prognostic significance of the angiopoietin-2/angiopoietin-1 and angiopoietin-1/Tie-2 ratios for early sepsis in an emergency department. Critical Care, 19, 367. https://doi.org/10.1186/s13054-015-1075-6.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hughes, D. T., & Sperandio, V. (2008). Inter-kingdom signalling: communication between bacteria and their hosts. Nature Reviews Microbiology, 6(2), 111–120. https://doi.org/10.1038/nrmicro1836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Whiteley, M., Diggle, S. P., & Greenberg, E. P. (2017). Progress in and promise of bacterial quorum sensing research. Nature, 551(7680), 313–320. https://doi.org/10.1038/nature24624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shiner, E. K., Terentyev, D., & Bryan, A., et al. (2006). Pseudomonas aeruginosa autoinducer modulates host cell responses through calcium signalling. Cellular Microbiology, 8(10), 1601–1610. https://doi.org/10.1111/j.1462-5822.2006.00734.x.

    Article  CAS  PubMed  Google Scholar 

  20. Skindersoe, M. E., Zeuthen, L. H., & Brix, S., et al. (2009). Pseudomonas aeruginosa quorum-sensing signal molecules interfere with dendritic cell-induced T-cell proliferation. FEMS Immunology and Medical Microbiology, 55(3), 335–345. https://doi.org/10.1111/j.1574-695X.2008.00533.x.

    Article  CAS  PubMed  Google Scholar 

  21. Vikstrom, E., Bui, L., Konradsson, P., & Magnusson, K. E. (2010). Role of calcium signalling and phosphorylations in disruption of the epithelial junctions by Pseudomonas aeruginosa quorum sensing molecule. European Journal of Cell Biology, 89(8), 584–597. https://doi.org/10.1016/j.ejcb.2010.03.002.

    Article  CAS  PubMed  Google Scholar 

  22. Karlsson, T., Turkina, M. V., Yakymenko, O., Magnusson, K. E., & Vikstrom, E. (2012). The Pseudomonas aeruginosa N-acylhomoserine lactone quorum sensing molecules target IQGAP1 and modulate epithelial cell migration. PLoS Pathogens, 8(10), e1002953. https://doi.org/10.1371/journal.ppat.1002953.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schwarzer, C., Fu, Z., & Patanwala, M., et al. (2012). Pseudomonas aeruginosa biofilm-associated homoserine lactone C12 rapidly activates apoptosis in airway epithelia. Cellular Microbiology, 14(5), 698–709. https://doi.org/10.1111/j.1462-5822.2012.01753.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Glucksam-Galnoy, Y., Sananes, R., & Silberstein, N., et al. (2013). The bacterial quorum-sensing signal molecule N-3-oxo-dodecanoyl-L-homoserine lactone reciprocally modulates pro- and anti-inflammatory cytokines in activated macrophages. Journal of Immunology, 191(1), 337–344. https://doi.org/10.4049/jimmunol.1300368.

    Article  CAS  Google Scholar 

  25. Song, D., Meng, J., & Cheng, J., et al. (2019). Pseudomonas aeruginosa quorum-sensing metabolite induces host immune cell death through cell surface lipid domain dissolution. Nature Microbiology, 4(1), 97–111. https://doi.org/10.1038/s41564-018-0290-8.

    Article  CAS  PubMed  Google Scholar 

  26. Shin, J., Ahn, S. H., Kim, S. H., & Oh, D. J. (2021). N-3-oxododecanoyl homoserine lactone exacerbates endothelial cell death by inducing receptor-interacting protein kinase 1-dependent apoptosis. American Journal of Physiology-Cell Physiology, 321(4), C644–C653. https://doi.org/10.1152/ajpcell.00094.2021.

    Article  CAS  PubMed  Google Scholar 

  27. Brindle, N. P., Saharinen, P., & Alitalo, K. (2006). Signaling and functions of angiopoietin-1 in vascular protection. Circulation Research, 98(8), 1014–1023. https://doi.org/10.1161/01.RES.0000218275.54089.12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Smith, R. S., Harris, S. G., Phipps, R., & Iglewski, B. (2002). The Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)homoserine lactone contributes to virulence and induces inflammation in vivo. Journal of Bacteriology, 184(4), 1132–1139. https://doi.org/10.1128/jb.184.4.1132-1139.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vincent, J. L., Sakr, Y., & Sprung, C. L., et al. (2006). Sepsis in European intensive care units: results of the SOAP study. Critical Care Medicine, 34(2), 344–353. https://doi.org/10.1097/01.ccm.0000194725.48928.3a.

    Article  PubMed  Google Scholar 

  30. Blomquist, K. C., & Nix, D. E. (2021). A critical evaluation of newer beta-lactam antibiotics for treatment of Pseudomonas aeruginosa Infections. Annals of Pharmacotherapy, 55(8), 1010–1024. https://doi.org/10.1177/1060028020974003.

    Article  CAS  PubMed  Google Scholar 

  31. Menden, H., Welak, S., Cossette, S., Ramchandran, R., & Sampath, V. (2015). Lipopolysaccharide (LPS)-mediated angiopoietin-2-dependent autocrine angiogenesis is regulated by NADPH oxidase 2 (Nox2) in human pulmonary microvascular endothelial cells. Journal of Biological Chemistry, 290(9), 5449–5461. https://doi.org/10.1074/jbc.M114.600692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Simons, M., Gordon, E., & Claesson-Welsh, L. (2016). Mechanisms and regulation of endothelial VEGF receptor signalling. Nature Reviews Molecular Cell Biology, 17(10), 611–625. https://doi.org/10.1038/nrm.2016.87.

    Article  CAS  PubMed  Google Scholar 

  33. Kawai, T., & Akira, S. (2007). Signaling to NF-kappaB by Toll-like receptors. Trends in Molecular Medicine, 13(11), 460–469. https://doi.org/10.1016/j.molmed.2007.09.002.

    Article  CAS  PubMed  Google Scholar 

  34. Ding, J., Song, D., Ye, X., & Liu, S. F. (2009). A pivotal role of endothelial-specific NF-kappaB signaling in the pathogenesis of septic shock and septic vascular dysfunction. Journal of Immunology, 183(6), 4031–4038. https://doi.org/10.4049/jimmunol.0900105.

    Article  CAS  Google Scholar 

  35. Kravchenko, V. V., Kaufmann, G. F., & Mathison, J. C., et al. (2006). N-(3-oxo-acyl)homoserine lactones signal cell activation through a mechanism distinct from the canonical pathogen-associated molecular pattern recognition receptor pathways. Journal of Biological Chemistry, 281(39), 28822–28830. https://doi.org/10.1074/jbc.M606613200.

    Article  CAS  PubMed  Google Scholar 

  36. Kravchenko, V. V., Kaufmann, G. F., & Mathison, J. C., et al. (2008). Modulation of gene expression via disruption of NF-kappaB signaling by a bacterial small molecule. Science, 321(5886), 259–263. https://doi.org/10.1126/science.1156499.

    Article  CAS  PubMed  Google Scholar 

  37. Vikstrom, E., Bui, L., Konradsson, P., & Magnusson, K. E. (2009). The junctional integrity of epithelial cells is modulated by Pseudomonas aeruginosa quorum sensing molecule through phosphorylation-dependent mechanisms. Experimental Cell Research, 315(2), 313–326. https://doi.org/10.1016/j.yexcr.2008.10.044.

    Article  CAS  PubMed  Google Scholar 

  38. Watanabe, T., Wang, S., & Noritake, J., et al. (2004). Interaction with IQGAP1 links APC to Rac1, Cdc42, and actin filaments during cell polarization and migration. Developmental Cells, 7(6), 871–883. https://doi.org/10.1016/j.devcel.2004.10.017.

    Article  CAS  Google Scholar 

  39. Noritake, J., Fukata, M., & Sato, K., et al. (2004). Positive role of IQGAP1, an effector of Rac1, in actin-meshwork formation at sites of cell-cell contact. Molecular Biology of the Cell, 15(3), 1065–1076. https://doi.org/10.1091/mbc.e03-08-0582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mataraza, J. M., Briggs, M. W., Li, Z., Entwistle, A., Ridley, A. J., & Sacks, D. B. (2003). IQGAP1 promotes cell motility and invasion. Journal of Biological Chemistry, 278(42), 41237–41245. https://doi.org/10.1074/jbc.M304838200.

    Article  CAS  PubMed  Google Scholar 

  41. David, S., Ghosh, C. C., Mukherjee, A., & Parikh, S. M. (2011). Angiopoietin-1 requires IQ domain GTPase-activating protein 1 to activate Rac1 and promote endothelial barrier defense. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(11), 2643–2652. https://doi.org/10.1161/ATVBAHA.111.233189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Korhonen, E. A., Lampinen, A., & Giri, H., et al. (2016). Tie1 controls angiopoietin function in vascular remodeling and inflammation. Journal of Clinical Investigation, 126(9), 3495–3510. https://doi.org/10.1172/JCI84923.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cho, C. H., Kim, K. E., & Byun, J., et al. (2005). Long-term and sustained COMP-Ang1 induces long-lasting vascular enlargement and enhanced blood flow. Circulation Research, 97(1), 86–94. https://doi.org/10.1161/01.RES.0000174093.64855.a6.

    Article  CAS  PubMed  Google Scholar 

  44. David, S., Park, J. K., & Meurs, M., et al. (2011). Acute administration of recombinant Angiopoietin-1 ameliorates multiple-organ dysfunction syndrome and improves survival in murine sepsis. Cytokine, 55(2), 251–259. https://doi.org/10.1016/j.cyto.2011.04.005.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea grant funded by the Korean government (MSIP) (No. 2020R1F1A1072498) and by departmental funding granted by Ma’am Sangchun Jung.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, J.S. and D.J.O.; methodology, J.S., S.H.A., and D.J.O.; formal analysis and investigation, J.S. and S.H.A.; writing—original draft preparation, J.S. and D.J.O. All authors have read and agreed to the final version of the manuscript.

Corresponding author

Correspondence to Dong-Jin Oh.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, J., Ahn, S.H. & Oh, DJ. Pseudomonas aeruginosa N-3-Oxododecanoyl Homoserine Lactone Disrupts Endothelial Integrity by Activating the Angiopoietin-Tie System. Cell Biochem Biophys (2024). https://doi.org/10.1007/s12013-024-01307-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12013-024-01307-8

Keywords

Navigation