Skip to main content

Advertisement

Log in

Quercetin’s Restorative Properties in Male Mice with 3-Nitropropionic Acid-induced Huntington-like Symptoms: Molecular Docking, Behavioral, and Biochemical Assessment

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The neurotoxicity of 3-Nitropropionic acid (3-NP) is well known. Herein, the prophylactic versus therapeutic effects of quercetin (QCT) were investigated against 3-NP-induced behavioral anomalies and oxidative neural damage. Thirty male mice were assigned into five groups; the negative control group, the QCT group (25 mg/kg/day, p.o. for 21 days), the 3-NP group (17 days), the prophylactic group (QCT administration for 14 consecutive days, and then 3-NP was administrated), the therapeutic group (3-NP was administrated and then QCT for 21 days). At the end of the animal treatment, behavioral studies were assessed. Subsequently, the brain sample tissues were assessed for oxidative stress-related parameters and histological evaluation. Moreover, the potential interaction between 3-NP and tumor necrosis factor-alpha (TNF-α) was evaluated by using a molecular docking study. 3-NP markedly led to neurotoxicity which was indicated by behavioral deficits (motor behavior, depression-like behavior, memory dysfunction, and passive avoidance) and oxidative damage. Blind and targeted molecular docking results showed good interaction between 3-NP and TNF-α. However, the prophylactic effects of QCT were superior to the therapeutic effects for attenuating 3-NP-induced neurobehavioral and oxidative neural changes in experimental mice, which histological changes of the brain’s striatum region approved our findings. Taken together, the antioxidant activity of QCT remarkably could attenuate 3-NP-induced neurobehavioral deficits and mitochondrial dysfunctions in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Brouillet, E., Jacquard, C., Bizat, N., & Blum, D. (2005). 3‐Nitropropionic acid: a mitochondrial toxin to uncover physiopathological mechanisms underlying striatal degeneration in Huntington’s disease. Journal of Neurochemistry, 95, 1521–1540.

    Article  CAS  PubMed  Google Scholar 

  2. Malik, J., Karan, M., & Dogra, R. (2017). Ameliorating effect of Celastrus paniculatus standardized extract and its fractions on 3-nitropropionic acid induced neuronal damage in rats: possible antioxidant mechanism. Pharmaceutical Biology, 55, 980–990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Badini, F., Bayrami, A., Mirshekar, M. A., Shahraki, S., & Fanaei, H. (2024). Levothyroxine attenuates behavioral impairment and improves oxidative stress and histological alteration 3-nitropropionic acid induced experimental Huntington’s disease in rats. Behavioural Brain Research, 12, 114864.

    Article  Google Scholar 

  4. Lum, P. T., Sekar, M., Seow, L. J., Shaikh, M. F., Arulsamy, A., Retinasamy, T., Gan, S. H., Gnanaraj, C., Esa, N. M., & Ramachawolran, G. (2023). Neuroprotective potency of mangiferin against 3-nitropropionic acid induced Huntington’s disease-like symptoms in rats: possible antioxidant and anti-inflammatory mechanisms. Frontiers in pharmacology, 14, 1189957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tariq, M., Khan, H. A., Elfaki, I., Al Deeb, S., & Al Moutaery, K. (2005). Neuroprotective effect of nicotine against 3-nitropropionic acid (3-NP)-induced experimental Huntington’s disease in rats. Brain Research Bulletin, 67, 161–168.

    Article  CAS  PubMed  Google Scholar 

  6. Katariya, R., Mishra, K., Sammeta, S., Umekar, M., Kotagale, N., & Taksande, B. (2024). Agmatine mitigates behavioral abnormalities and neurochemical dysregulation associated with 3-Nitropropionic acid-induced Huntington’s disease in rats. NeuroToxicology, 102, 12–28.

    Article  CAS  PubMed  Google Scholar 

  7. Prent, N., Jonker, F. A., Schouws, S. N., & Jonker, C. (2023). The risk of criminal behavior in the elderly and patients with neurodegenerative disease. Handbook of Clinical Neurology, 197, 181–196.

    Article  PubMed  Google Scholar 

  8. Cho, K. J., & Kim, G. W. (2015). Differential caspase activity in the cortex and striatum with chronic infusion of 3-nitropropionic acid. Biochemical and Biophysical Research Communications, 465, 631–637.

    Article  CAS  PubMed  Google Scholar 

  9. Dhadde, S. B., Nagakannan, P., Roopesh, M., Kumar, S. A., Thippeswamy, B., Veerapur, V. P., & Badami, S. (2016). Effect of embelin against 3-nitropropionic acid-induced Huntington’s disease in rats. Biomedicine & Pharmacotherapy, 77, 52–58.

    Article  CAS  Google Scholar 

  10. Colle, D., Santos, D. B., de Souza, V., Lopes, M. W., Leal, R. B., de Souza Brocardo, P., & Farina, M. (2019). Sodium selenite protects from 3-nitropropionic acid-induced oxidative stress in cultured primary cortical neurons. Molecular Biology Reports, 46, 751–762.

    CAS  Google Scholar 

  11. Pandey, M., Varghese, M., Sindhu, K. M., Sreetama, S., Navneet, A., Mohanakumar, K. P., & Usha, R. (2008). Mitochondrial NAD+‐linked State 3 respiration and complex‐I activity are compromised in the cerebral cortex of 3‐nitropropionic acid‐induced rat model of Huntington’s disease. Journal of Neurochemistry, 104, 420–434.

    Article  CAS  PubMed  Google Scholar 

  12. Kumar, P., Padi, S. S., Naidu, P., & Kumar, A. (2010). Protective effect of antioxidants on 3-nitropropionic acid induced oxidative stress and cognitive impairment. Annals of Neurosciences, 13, 41–47.

    Article  Google Scholar 

  13. Shalaby, H. N., El-Tanbouly, D. M., & Zaki, H. F. (2018). Topiramate mitigates 3-nitropropionic acid-induced striatal neurotoxicity via modulation of AMPA receptors. Food and Chemical Toxicology, 118, 227–234.

    Article  CAS  PubMed  Google Scholar 

  14. Nabavi, S. F., Atanasov, A. G., Khan, H., Barreca, D., Trombetta, D., Testai, L., Sureda, A., Tejada, S., Vacca, R. A., & Pittalà, V. (2018). Targeting ubiquitin-proteasome pathway by natural, in particular polyphenols, anticancer agents: Lessons learned from clinical trials. Cancer Letters, 434, 101–113.

    Article  CAS  PubMed  Google Scholar 

  15. Antunes, M. S., Goes, A. T., Boeira, S. P., Prigol, M., & Jesse, C. R. (2014). Protective effect of hesperidin in a model of Parkinson’s disease induced by 6-hydroxydopamine in aged mice. Nutrition, 30, 1415–1422.

    Article  CAS  PubMed  Google Scholar 

  16. Li, S., & Pu, X.-P. (2011). Neuroprotective effect of kaempferol against a 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced mouse model of Parkinson’s disease. Biological and Pharmaceutical Bulletin, 34, 1291–1296.

    Article  CAS  PubMed  Google Scholar 

  17. Khan, M., Raza, S. S., Javed, H., Ahmad, A., Khan, A., Islam, F., Safhi, M. M., & Islam, F. (2012). Rutin protects dopaminergic neurons from oxidative stress in an animal model of Parkinson’s disease. Neurotoxicity Research, 22, 1–15.

    Article  PubMed  Google Scholar 

  18. Chakraborty, J., Singh, R., Dutta, D., Naskar, A., Rajamma, U., & Mohanakumar, K. P. (2014). Quercetin improves behavioral deficiencies, restores astrocytes and microglia, and reduces serotonin metabolism in 3‐nitropropionic acid‐induced rat model of Huntington’s disease. CNS Neuroscience & Therapeutics, 20, 10–19.

    CAS  Google Scholar 

  19. Puerta, E., Suárez-Santiago, J. E., Santos-Magalhães, N. S., Ramirez, M. J., & Irache, J. M. (2017). Effect of the oral administration of nanoencapsulated quercetin on a mouse model of Alzheimer’s disease. International Journal of Pharmaceutics, 517, 50–57.

    Article  PubMed  Google Scholar 

  20. Zaplatic, E., Bule, M., Shah, S. Z. A., Uddin, M. S., & Niaz, K. (2019). Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer’s disease. Life Sciences, 224, 109–119.

    Article  CAS  PubMed  Google Scholar 

  21. Karuppagounder, S., Madathil, S., Pandey, M., Haobam, R., Rajamma, U., & Mohanakumar, K. (2013). Quercetin up-regulates mitochondrial complex-I activity to protect against programmed cell death in rotenone model of Parkinson’s disease in rats. Neuroscience, 236, 136–148.

    Article  CAS  PubMed  Google Scholar 

  22. Sharma, S., Raj, K., & Singh, S. (2020). Neuroprotective effect of quercetin in combination with piperine against rotenone-and iron supplement–induced Parkinson’s disease in experimental rats. Neurotoxicity Research, 37, 198–209.

    Article  CAS  PubMed  Google Scholar 

  23. Kim, O. T., Le, M. D., Trinh, H. X., & Nong, H. V. (2016). In silico studies for the interaction of tumor necrosis factor-alpha (TNF-α) with different saponins from Vietnamese ginseng (Panax vietnamesis). Biophysics and Physicobiology, 13, 173–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cirillo, G., Maggio, N., Bianco, M. R., Vollono, C., Sellitti, S., & Papa, M. (2010). Discriminative behavioral assessment unveils remarkable reactive astrocytosis and early molecular correlates in basal ganglia of 3-nitropropionic acid subchronic treated rats. Neurochemistry International, 56, 152–160.

    Article  CAS  PubMed  Google Scholar 

  25. Lokman, M. S., Althagafi, H. A., Alharthi, F., Habotta, O. A., Hassan, A. A., Elhefny, M. A., Al Sberi, H., Theyab, A., Mufti, A. H., & Alhazmi, A. (2023). Protective effect of quercetin against 5-fluorouracil-induced cardiac impairments through activating Nrf2 and inhibiting NF-κB and caspase-3 activities. Environmental Science and Pollution Research, 30, 17657–17669.

    Article  CAS  PubMed  Google Scholar 

  26. Mert, D. G., Turgut, N. H., Arslanbas, E., Gungor, H., & Kara, H. (2019). The influence of quercetin on recognition memory and brain oxidative damage in a ketamine model of schizophrenia. Psychiatry and Clinical Psychopharmacology, 29, 1–7.

    Article  CAS  Google Scholar 

  27. Makhdoomi, S., Mahboobian, M. M., Haddadi, R., Komaki, A., & Mohammadi, M. (2022). Silibinin-loaded nanostructured lipid carriers (NLCs) ameliorated cognitive deficits and oxidative damages in aluminum chloride-induced neurotoxicity in male mice. Toxicology, 477, 153260.

    Article  CAS  PubMed  Google Scholar 

  28. Haddadi, R., Eyvari-Brooshghalan, S., Makhdoomi, S., Fadaiie, A., Komaki, A., & Daneshvar, A. (2024). Neuroprotective effects of silymarin in 3-nitropropionic acid-induced neurotoxicity in male mice: Improving behavioral deficits by attenuating oxidative stress and neuroinflammation. Naunyn-Schmiedeberg’s. Archives of Pharmacology, 397, 2447–2463.

    Article  CAS  PubMed  Google Scholar 

  29. Pritchett, K., & Mulder, G. B. (2003). The rotarod. Journal of the American Association for Laboratory Animal Science, 42, 49.

    CAS  Google Scholar 

  30. Castagné, V., Moser, P., Roux, S., & Porsolt, R. D. (2010). Rodent models of depression: forced swim and tail suspension behavioral despair tests in rats and mice. Current Protocols in Pharmacology, 49, 5.8. 1–5.8. 14.

    Article  Google Scholar 

  31. Zavvari, F., & Karimzadeh, F. (2017). A review on the behavioral tests for learning and memory assessments in rat. The Neuroscience Journal of Shefaye Khatam, 5, 110–124.

    Article  Google Scholar 

  32. Kumar, P., Kalonia, H., & Kumar, A. (2010a). Protective effect of sesamol against 3‐nitropropionic acid‐induced cognitive dysfunction and altered glutathione redox balance in rats. Basic & Clinical Pharmacology & Toxicology, 107, 577–582.

    Article  CAS  Google Scholar 

  33. Bashiri, H., Rezayof, A., Sahebgharani, M., Tavangar, S. M., & Zarrindast, M.-R. (2016). Modulatory effects of the basolateral amygdala α2-adrenoceptors on nicotine-induced anxiogenic-like behaviours of rats in the elevated plus maze. Neuropharmacology, 105, 478–486.

    Article  CAS  PubMed  Google Scholar 

  34. Haddadi R, Rashtiani R. Anti‑inflammatory and anti‑hyperalgesic effects of milnacipran in inflamed rats: involvement of myeloperoxidase activity, cytokines and oxidative/nitrosative stress. Inflammopharmacology. 2020.

  35. Kumamoto, E., Fujita, T., & Jiang, C.-Y. (2014). TRP channels involved in spontaneous L-glutamate release enhancement in the adult rat spinal substantia gelatinosa. Cells, 3, 331–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kumar, P., & Kumar, A. (2009). Neuroprotective effect of cyclosporine and FK506 against 3-nitropropionic acid induced cognitive dysfunction and glutathione redox in rat: possible role of nitric oxide. Neuroscience Research, 63, 302–314.

    Article  CAS  PubMed  Google Scholar 

  37. Gao, Y., Chu, S.-F., Li, J.-P., Zhang, Z., Yan, J.-Q., Wen, Z.-L., Xia, C.-Y., Mou, Z., Wang, Z.-Z., & He, W.-B. (2015). Protopanaxtriol protects against 3-nitropropionic acid-induced oxidative stress in a rat model of Huntington’s disease. Acta Pharmacologica Sinica, 36, 311–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Biswas, S. (2019). Molecular docking study for analyzing the inhibitory effect of anti-inflammatory plant compound against tumour necrosis factor (TNF-α). Current Drug Therapy, 14, 85–90.

    Article  CAS  Google Scholar 

  39. Ahmed, L. A., Darwish, H. A., Abdelsalam, R. M., & Amin, H. A. (2016). Role of rho kinase inhibition in the protective effect of fasudil and simvastatin against 3-nitropropionic acid-induced striatal neurodegeneration and mitochondrial dysfunction in rats. Molecular Neurobiology, 53, 3927–3938.

    Article  CAS  PubMed  Google Scholar 

  40. La Fontaine, M. A., Geddes, J. W., Banks, A., & Butterfield, D. A. (2000). 3-Nitropropionic acid induced in vivo protein oxidation in striatal and cortical synaptosomes: insights into Huntington’s disease. Brain Research, 858, 356–362.

    Article  PubMed  Google Scholar 

  41. Lee, B., Yeom, M., Shim, I., Lee, H., & Hahm, D.-H. (2020). Protective effects of quercetin on anxiety-like symptoms and neuroinflammation induced by lipopolysaccharide in rats. Evidence Based Complementary and Alternative Medicine, 42, 1105–1123. 2020.

    Google Scholar 

  42. Ahuja, M., Bishnoi, M., & Chopra, K. (2008). Protective effect of minocycline, a semi-synthetic second-generation tetracycline against 3-nitropropionic acid (3-NP)-induced neurotoxicity. Toxicology, 244, 111–122.

    Article  CAS  PubMed  Google Scholar 

  43. Sayed, N. H., Fathy, N., Kortam, M. A., Rabie, M. A., Mohamed, A. F., & Kamel, A. S. (2020). Vildagliptin attenuates Huntington’s disease through activation of GLP-1 receptor/PI3K/Akt/BDNF pathway in 3-nitropropionic acid rat model. Neurotherapeutics, 17, 252–268.

    Article  CAS  PubMed  Google Scholar 

  44. Ibrahim, W. W., & Abdel Rasheed, N. O. (2022). Diapocynin neuroprotective effects in 3-nitropropionic acid Huntington’s disease model in rats: emphasis on Sirt1/Nrf2 signaling pathway. Inflammopharmacology, 30, 1–14.

    Article  Google Scholar 

  45. Balasubramanian, R., Bazaz, M. R., Pasam, T., Sharief, N., Velip, L., Samanthula, G., & Dandekar, M. P. (2022). Involvement of microbiome gut–brain axis in neuroprotective effect of quercetin in mouse model of repeated mild traumatic brain injury. NeuroMolecular Medicine, 25, 1–13.

    Google Scholar 

  46. Sadighparvar, S., Darband, S. G., Yousefi, B., Kaviani, M., Ghaderi‐Pakdel, F., Mihanfar, A., Babaei, G., Mobaraki, K., & Majidinia, M. (2020). Combination of quercetin and exercise training attenuates depression in rats with 1, 2‐dimethylhydrazine‐induced colorectal cancer: Possible involvement of inflammation and BDNF signalling. Experimental Physiology, 105, 1598–1609.

    Article  CAS  PubMed  Google Scholar 

  47. Samad, N., Saleem, A., Yasmin, F., & Shehzad, M. (2018). Quercetin protects against stress-induced anxiety- and depression-like behavior and improves memory in male mice. Physiological Research, 67, 795–808.

    Article  CAS  PubMed  Google Scholar 

  48. Kawabata, K., Kawai, Y., & Terao, J. (2010). Suppressive effect of quercetin on acute stress-induced hypothalamic-pituitary-adrenal axis response in Wistar rats. The Journal of Nutritional Biochemistry, 21, 374–380.

    Article  CAS  PubMed  Google Scholar 

  49. Habib, M. Z., Tadros, M. G., Abd-Alkhalek, H. A., Mohamad, M. I., Eid, D. M., Hassan, F. E., Elhelaly, H., El Faramawy, Y., & Aboul-Fotouh, S. (2022). Harmine prevents 3-nitropropionic acid-induced neurotoxicity in rats via enhancing NRF2-mediated signaling: Involvement of p21 and AMPK. European Journal of Pharmacology, 927, 175046.

    Article  CAS  PubMed  Google Scholar 

  50. Khodagholi, F., Maleki, A., Motamedi, F., Mousavi, M. A., Rafiei, S., & Moslemi, M. (2020). Oxytocin prevents the development of 3-NP-induced anxiety and depression in male and female rats: possible interaction of OXTR and mGluR2. Cellular and Molecular Neurobiology, 42, 1–19.

    Google Scholar 

  51. Sugino, T., Nozaki, K., Takagi, Y., Hattori, I., Hashimoto, N., & Yodoi, J. (1999). Expression and distribution of redox regulatory protein, thioredoxin after metabolic impairment by 3-nitropropionic acid in rat brain. Neuroscience Letters, 275, 145–148.

    Article  CAS  PubMed  Google Scholar 

  52. Sharma, P., Kumar, M., & Bansal, N. (2021b). Ellagic acid prevents 3-nitropropionic acid induced symptoms of Huntington’s disease. Naunyn-Schmiedeberg’s. Archives of Pharmacology, 394, 1917–1928.

    Article  CAS  PubMed  Google Scholar 

  53. Sabogal-Guáqueta, A. M., Munoz-Manco, J. I., Ramírez-Pineda, J. R., Lamprea-Rodriguez, M., Osorio, E., & Cardona-Gómez, G. P. (2015). The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology, 93, 134–145.

    Article  PubMed  Google Scholar 

  54. Hashemzaei, M., Fanoudi, S., Najari, M., Fotouhi, M., Belaran, M., Alipour, N. S., Dadrezaei, Z., Miri, F., & Tabrizian, K. (2021). Effects of quercetin and resveratrol on zinc chloride-and sodium metavanadate-induced passive avoidance memory retention deficits in male mice. Preventive Nutrition and Food Science, 26, 67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pădureanu, V., Florescu, D. N., Pădureanu, R., Ghenea, A. E., Gheonea, D. I., & Oancea, C. N. (2022). Role of antioxidants and oxidative stress in the evolution of acute pancreatitis. Experimental and Therapeutic Medicine, 23, 1–5.

    Article  Google Scholar 

  56. Korkmaz, A., & Kolankaya, D. (2013). Inhibiting inducible nitric oxide synthase with rutin reduces renal ischemia/reperfusion injury. Canadian Journal of Surgery, 56, 6.

    Article  PubMed Central  Google Scholar 

  57. Yang, W., Liu, W., Yu, W., Fei, D., Meng, X., Yang, S., Meng, S., & Zhao, M. (2018). Angptl2 deficiency attenuates paraquat (PQ)-induced lung injury in mice by altering inflammation, oxidative stress and fibrosis through NF-κB pathway. Biochemical and Biophysical Research Communications, 503, 94–101.

    Article  CAS  PubMed  Google Scholar 

  58. Kumar, P., Padi, S., Naidu, P. & Kumar, A. (2007). Cyclooxygenase inhibition attenuates 3‐nitropropionic acid‐induced neurotoxicity in rats: possible antioxidant mechanisms. Fundamental & Clinical Pharmacology, 21, 297–306.

    Article  CAS  Google Scholar 

  59. Sallam, A. A., El-Magd, M. A., Ahmed, M. M., Ghamry, H. I., Alshahrani, M. Y., Hegazy, R. A., Magdy, A., & Abou El-Fotoh, M. F. (2022). Quercetin alleviated multi-walled carbon nanotubes-induced neurotoxicity in mice through inhibition of oxidation, inflammation, and pyroptosis. Biomedicine & Pharmacotherapy, 151, 113160.

    Article  CAS  Google Scholar 

  60. Abdelfattah, M. S., Badr, S. E., Lotfy, S. A., Attia, G. H., Aref, A. M., Abdel Moneim, A. E., & Kassab, R. B. (2020). Rutin and selenium co-administration reverse 3-nitropropionic acid-induced neurochemical and molecular impairments in a mouse model of Huntington’s disease. Neurotoxicity Research, 37, 77–92.

    Article  CAS  PubMed  Google Scholar 

  61. Mehan, S., Monga, V., Rani, M., Dudi, R., & Ghimire, K. (2018). Neuroprotective effect of solanesol against 3-nitropropionic acid-induced Huntington’s disease-like behavioral, biochemical, and cellular alterations: Restoration of coenzyme-Q10-mediated mitochondrial dysfunction. Indian Journal of Pharmacology, 50, 309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang M., Swarts S. G., Yin L., Liu C., Tian Y., Cao Y., Swarts M., Yang S., Zhang S. B., Zhang K. (2011) Antioxidant properties of quercetin. In: Oxygen transport to tissue XXXII (pp. 283–289) Springer.

  63. Chen, S., Chen, H., Du, Q., & Shen, J. (2020). Targeting myeloperoxidase (MPO) mediated oxidative stress and inflammation for reducing brain ischemia injury: potential application of natural compounds. Frontiers in Physiology, 11, 433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sharma, P., Aggarwal, K., Awasthi, R., Kulkarni, G. T., & Sharma, B. (2021). Behavioral and biochemical investigations to explore the efficacy of quercetin and folacin in experimental diabetes induced vascular endothelium dysfunction and associated dementia in rats. Journal of Basic and Clinical Physiology and Pharmacology, 34, 603–615.

    Article  PubMed  Google Scholar 

  65. AbdElrazek, D. A., Ibrahim, M. A., Hassan, N. H., Hassanen, E. I., Farroh, K. Y., & Abass, H. (2023). Neuroprotective effect of quercetin and nano-quercetin against cyclophosphamide-induced oxidative stress in the rat brain: role of Nrf2/HO-1/Keap-1 signaling pathway. Neurotoxicology, 98, 16–28.

    Article  CAS  PubMed  Google Scholar 

  66. Jamwal, S., & Kumar, P. (2016). Spermidine ameliorates 3-nitropropionic acid (3-NP)-induced striatal toxicity: possible role of oxidative stress, neuroinflammation, and neurotransmitters. Physiology & Behavior, 155, 180–187.

    Article  CAS  Google Scholar 

  67. Jang, M., Lee, M. J., & Cho, I.-H. (2014). Ethyl pyruvate ameliorates 3-nitropropionic acid-induced striatal toxicity through anti-neuronal cell death and anti-inflammatory mechanisms. Brain, Behavior, and Immunity, 38, 151–165.

    Article  CAS  PubMed  Google Scholar 

  68. Mu, S., Li, Y., Liu, B., Wang, W., Chen, S., Wu, J., OuYang, L., Zhu, Y., Li, K., & Zhan, M. (2016). Dihydromyricetin ameliorates 3NP-induced behavioral deficits and striatal injury in rats. Journal of Molecular Neuroscience, 60, 267–275.

    Article  CAS  PubMed  Google Scholar 

  69. Gasmi, S., Rouabhi, R., Kebieche, M., Boussekine, S., Salmi, A., Toualbia, N., Taib, C., Bouteraa, Z., Chenikher, H., & Henine, S. (2017). Effects of Deltamethrin on striatum and hippocampus mitochondrial integrity and the protective role of Quercetin in rats. Environmental Science and Pollution Research, 24, 16440–16457.

    Article  CAS  PubMed  Google Scholar 

  70. Gendy, A. M., El-Sadek, H. M., Amin, M. M., Ahmed, K. A., El-Sayed, M. K., El-Haddad, A. E., & Soubh, A. (2023a). Glycyrrhizin prevents 3-nitropropionic acid-induced neurotoxicity by downregulating HMGB1/TLR4/NF-κB p65 signaling, and attenuating oxidative stress, inflammation, and apoptosis in rats. Life Sciences, 314, 121317.

    Article  CAS  PubMed  Google Scholar 

  71. Gendy, A. M., Soubh, A., Elnagar, M. R., Hamza, E., Ahmed, K. A., Aglan, A., El-Haddad, A. E., Farag, M. A., & El-Sadek, H. M. (2023b). New insights into the role of berberine against 3-nitropropionic acid-induced striatal neurotoxicity: Possible role of BDNF–TrkB–PI3K/Akt and NF-κB signaling. Food and Chemical Toxicology, 175, 113721.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Hamadan University of Medical Sciences for supporting this study.

Funding

This work was supported by a grant from the Research and Technology Vice-Chancellor of Hamadan University of Medical Sciences, Hamadan, Iran (Grant No: 9804253251).

Author information

Authors and Affiliations

Authors

Contributions

S.M. implemented the molecular docking, and statistical analysis, and wrote the main manuscript. A.F. collected and analyzed data. A.R. was the advisor and was involved in manuscript editing. M.M. and R.H. were the study’s supervisors and were involved in conceptualization and manuscript editing. All authors reviewed the manuscript.

Corresponding author

Correspondence to Rasool Haddadi.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhdoomi, S., Fadaiie, A., Mohammadi, M. et al. Quercetin’s Restorative Properties in Male Mice with 3-Nitropropionic Acid-induced Huntington-like Symptoms: Molecular Docking, Behavioral, and Biochemical Assessment. Cell Biochem Biophys (2024). https://doi.org/10.1007/s12013-024-01302-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12013-024-01302-z

Keywords

Navigation