Skip to main content

Advertisement

Log in

Resolvin D1 Inhibits IL-6-Induced Epithelial-Mesenchymal Transition of Colorectal Cancer Cells by Targeting IL-6/STAT3 Signaling

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) has emerged as a prevalent malignancy worldwide, exhibiting the high morbidity and mortality rates. Resolvin D1 (RvD1) can exert anti-inflammation and anti-cancer effects on various diseases. This study is aimed to explore the role of RvD1 in CRC cells. HCT15 and SW480 cells were stimulated with IL-6 in our study. A series of assays such as CCK-8, colony formation, wound healing, Transwell, Western blotting, and immunofluorescence staining were designed and conducted to figure out the role of RvD1 in CRC cells. RvD1 suppressed IL-6-induced SW480 and HCT15 cell proliferation. In addition, RvD1 inhibited IL-6-induced SW480 and HCT15 cell migration, invasion, and EMT process. In mechanism, RvD1 inhibited the activation of IL-6/STAT3 signaling in SW480 and HCT15 cells. Angoline strengthened the inhibitive effect of RvD1 on cell malignancy. RvD1 inhibited cell growth, migration, invasion and EMT process by inactivating IL-6/STAT3 signaling in CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Weitz, J., et al. (2005). Colorectal cancer. Lancet, 365(9454), 153–165.

    Article  PubMed  Google Scholar 

  2. Brody, H. (2015). Colorectal cancer. Nature, 521(7551).

  3. Thanikachalam, K., & G. Khan. (2019). Colorectal Cancer and Nutrition. Nutrients, 11(1), 164.

  4. Dekker, E., et al. (2019). Colorectal cancer. Lancet, 394(10207), 1467–1480.

    Article  PubMed  Google Scholar 

  5. Lin, Y., et al. (2020). Progress in Understanding the IL-6/STAT3 Pathway in Colorectal Cancer. OncoTargets and Therapy, 13, 13023–13032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rokavec, M., et al. (2014). IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. Journal of Clinical Investigation, 124(4), 1853–1867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Heichler, C., et al. (2020). STAT3 activation through IL-6/IL-11 in cancer-associated fibroblasts promotes colorectal tumour development and correlates with poor prognosis. Gut, 69(7), 1269–1282.

    Article  CAS  PubMed  Google Scholar 

  8. Huang, B., Lang, X., & Li, X. (2022). The role of IL-6/JAK2/STAT3 signaling pathway in cancers. Frontiers in Oncology, 12, 1023177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu, A., et al. (2023). Nuclear translocation of thioredoxin-1 promotes colorectal cancer development via modulation of the IL-6/STAT3 signaling axis through interaction with STAT3. Theranostics, 13(14), 4730–4744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lau, W. W., et al. (2012). Interleukin-6 autocrine signaling mediates melatonin MT(1/2) receptor-induced STAT3 Tyr(705) phosphorylation. Journal of Pineal Research, 52(4), 477–489.

    Article  CAS  PubMed  Google Scholar 

  11. Lee, M. M., et al. (2012). CCR1-mediated STAT3 tyrosine phosphorylation and CXCL8 expression in THP-1 macrophage-like cells involve pertussis toxin-insensitive Gα(14/16) signaling and IL-6 release. Journal of Immunology, 189(11), 5266–5276.

    Article  CAS  Google Scholar 

  12. Kojima, H., et al. (2005). STAT3 regulates Nemo-like kinase by mediating its interaction with IL-6-stimulated TGFbeta-activated kinase 1 for STAT3 Ser-727 phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 102(12), 4524–4529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pan, Y. M., et al. (2016). STAT3 signaling drives EZH2 transcriptional activation and mediates poor prognosis in gastric cancer. Molecular Cancer, 15(1), 79.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gao, S., et al. (2018). PMA treated THP-1-derived-IL-6 promotes EMT of SW48 through STAT3/ERK-dependent activation of Wnt/β-catenin signaling pathway. Biomedicine and Pharmacotherapy, 108, 618–624.

    Article  CAS  PubMed  Google Scholar 

  15. Dmitrieva, N., Suess, G., & Shirley, R. (2014). Resolvins RvD1 and 17(R)-RvD1 alleviate signs of inflammation in a rat model of endometriosis. Fertility and Sterility, 102(4), 1191–1196.

    Article  CAS  PubMed  Google Scholar 

  16. Molaei, E., et al. (2021). Resolvin D1, therapeutic target in acute respiratory distress syndrome. European Journal of Pharmacology, 911, 174527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yaribeygi, H., et al. (2019). Anti-inflammatory effects of resolvins in diabetic nephropathy: Mechanistic pathways. Journal of Cellular Physiology, 234(9), 14873–14882.

    Article  CAS  PubMed  Google Scholar 

  18. Echeverría, F., et al. (2019). Reduction of high-fat diet-induced liver proinflammatory state by eicosapentaenoic acid plus hydroxytyrosol supplementation: involvement of resolvins RvE1/2 and RvD1/2. Journal of Nutritional Biochemistry, 63, 35–43.

    Article  PubMed  Google Scholar 

  19. Perna, E., et al. (2021). Effect of resolvins on sensitisation of TRPV1 and visceral hypersensitivity in IBS. Gut, 70(7), 1275–1286.

    Article  CAS  PubMed  Google Scholar 

  20. Sulciner, M. L., et al. (2018). Resolvins suppress tumor growth and enhance cancer therapy. Journal of Experimental Medicine, 215(1), 115–140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhuo, Y., et al. (2018). Resolvin D1 Promotes SIRT1 Expression to Counteract the Activation of STAT3 and NF-κB in Mice with Septic-Associated Lung Injury. Inflammation, 41(5), 1762–1771.

    Article  CAS  PubMed  Google Scholar 

  22. Chen, J., et al. (2014). Aspirin-triggered resolvin D1 down-regulates inflammatory responses and protects against endotoxin-induced acute kidney injury. Toxicology and Applied Pharmacology, 277(2), 118–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee, H. N., et al. (2013). Resolvin D1 stimulates efferocytosis through p50/p50-mediated suppression of tumor necrosis factor-α expression. Journal of Cell Science, 126(Pt 17), 4037–4047.

    CAS  PubMed  Google Scholar 

  24. Shan, K., et al. (2020). Resolvin D1 and D2 inhibit tumour growth and inflammation via modulating macrophage polarization. Journal of Cellular and Molecular Medicine, 24(14), 8045–8056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lu, Y., et al. (2018). Resolvin D1 inhibits the proliferation of lipopolysaccharide-treated HepG2 hepatoblastoma and PLC/PRF/5 hepatocellular carcinoma cells by targeting the MAPK pathway. Experimental and Therapeutic Medicine, 16(4), 3603–3610.

    PubMed  PubMed Central  Google Scholar 

  26. Vannitamby, A., et al. (2021). Aspirin-Triggered Resolvin D1 Reduces Proliferation and the Neutrophil to Lymphocyte Ratio in a Mutant KRAS-Driven Lung Adenocarcinoma Model. Cancers, 13(13), 3224.

  27. Sun, L., et al. (2019). Resolvin D1 prevents epithelial-mesenchymal transition and reduces the stemness features of hepatocellular carcinoma by inhibiting paracrine of cancer-associated fibroblast-derived COMP. Journal of Experimental and Clinical Cancer Research, 38(1), 170.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lee, H. N., et al. (2021). Resolvin D1 suppresses inflammation-associated tumorigenesis in the colon by inhibiting IL-6-induced mitotic spindle abnormality. FASEB Journal, 35(5), e21432.

    Article  CAS  PubMed  Google Scholar 

  29. Baidoun, F., et al. (2021). Colorectal Cancer Epidemiology: Recent Trends and Impact on Outcomes. Current Drug Targets, 22(9), 998–1009.

    Article  CAS  PubMed  Google Scholar 

  30. Eng, C., et al. (2022). A comprehensive framework for early-onset colorectal cancer research. Lancet Oncology, 23(3), e116–e128.

    Article  PubMed  Google Scholar 

  31. Brandt, A. M., et al. (2018). Human IL6 stimulates bovine satellite cell proliferation through a Signal transducer and activator of transcription 3 (STAT3)-dependent mechanism. Domestic Animal Endocrinology, 62, 32–38.

    Article  CAS  PubMed  Google Scholar 

  32. Dubový, P., et al. (2018). Bilateral activation of STAT3 by phosphorylation at the tyrosine-705 (Y705) and serine-727 (S727) positions and its nuclear translocation in primary sensory neurons following unilateral sciatic nerve injury. Histochemistry and Cell Biology, 150(1), 37–47.

    Article  PubMed  Google Scholar 

  33. Niotis, A., et al. (2018). ki-67 and Topoisomerase IIa proliferation markers in colon adenocarcinoma. Journal of Buon, 23(7), 24–27.

    PubMed  Google Scholar 

  34. Yang, Y., et al. (2022). Numb inhibits migration and promotes proliferation of colon cancer cells via RhoA/ROCK signaling pathway repression. Experimental Cell Research, 411(2), 113004.

    Article  CAS  PubMed  Google Scholar 

  35. Alaaeldin, R., et al. (2022). Inhibition of NF-kB/IL-6/JAK2/STAT3 Pathway and Epithelial-Mesenchymal Transition in Breast Cancer Cells by Azilsartan. Molecules, 27(22), 7825.

  36. Liu, M., et al. (2022). RBMS1 promotes gastric cancer metastasis through autocrine IL-6/JAK2/STAT3 signaling. Cell Death and Disease, 13(3), 287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang, P., et al. (2019). ResolvinD1 attenuates high-mobility group box 1-induced epithelial-to-mesenchymal transition in nasopharyngeal carcinoma cells. Experimental Biology and Medicine, 244(18), 1608–1618.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gong, C., et al. (2018). Abnormally expressed JunB transactivated by IL-6/STAT3 signaling promotes uveal melanoma aggressiveness via epithelial-mesenchymal transition. Bioscience Reports, 38(4), BSR20180532.

  39. Ma, Z., et al. (2023). RHOJ Induces Epithelial-to-Mesenchymal Transition by IL-6/STAT3 to Promote Invasion and Metastasis in Gastric Cancer. International Journal of Biological Sciences, 19(14), 4411–4426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sun, W., et al. (2020). Resolvin D1 suppresses pannus form ation via decreasing connective tissue growth factor caused by upregulation of miRNA-146a-5p in rheumatoid arthritis. Arthritis Research and Therapy, 22(1), 61.

Download references

Acknowledgements

We appreciate the support of Huanggang Central Hospital Affiliated to Yangtze University.

Funding

2023 Hunan Provincial People’s Hospital Medical Association Special Research Fund Project (2023YLT010). Hubei University of Science and Technology 2023 Medical Teaching Base Scientific Research Special Fund Project (2023YJDKY02). Scientific Research Project of Hubei Provincial Health and Family Planning Commission in 2021 (WJ2021M083).

Author information

Authors and Affiliations

Authors

Contributions

Heng Du and Lijuan You were the main designers of this study. Heng Du, Lijuan You, Anding Wu and Chaowu Chen collected and analyzed the data. Heng Du, Lijuan You, Anding Wu, Fei Wang, Jie Yu and Chaowu Chen drafted the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chaowu Chen.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, H., You, L., Wu, A. et al. Resolvin D1 Inhibits IL-6-Induced Epithelial-Mesenchymal Transition of Colorectal Cancer Cells by Targeting IL-6/STAT3 Signaling. Cell Biochem Biophys (2024). https://doi.org/10.1007/s12013-024-01299-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12013-024-01299-5

Keywords

Navigation