Skip to main content

Advertisement

Log in

Molecular Mechanism of Yangshen Maidong Decoction in the Treatment of Chronic Heart Failure based on Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulations

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Chronic heart failure (CHF) is a complex multifactorial clinical syndrome leading to abnormal cardiac structure and function. The severe form of this ailment is characterized by high disability, high mortality, and morbidity. Worldwide, 2–17% of patients die at first admission, of which 17–45% die within 1 year of admission and >50% within 5 years. Yangshen Maidong Decoction (YSMDD) is frequently used to treat the deficiency and pain of the heart. The specific mechanism of action of YSMDD in treating CHF, however, remains unclear. Therefore, a network pharmacology-based strategy combined with molecular docking and molecular dynamics simulations was employed to investigate the potential molecular mechanism of YSMDD against CHF. The effective components and their targets of YSMDD and related targets of CHF were predicted and screened based on the public database. The network pharmacology was used to explore the potential targets and possible pathways that involved in YSMDD treated CHF. Molecular docking and molecular dynamics simulations were performed to elucidate the binding affinity between the YSMDD and CHF targets. Screen results, 10 main active ingredients, and 6 key targets were acquired through network pharmacology analysis. Pathway enrichment analysis showed that intersectional targets associated pathways were enriched in the Prostate cancer pathway, Hepatitis B pathway, and C-type lectin receptor signaling pathways. Molecular docking and molecular dynamics simulations analysis suggested 5 critical active ingredients have high binding affinity to the 5 key targets. This research shows the multiple active components and molecular mechanisms of YSMDD in the treatment of CHF and offers resources and suggestions for future studies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen, L., Wei, N. & Jiang, Y. et al. (2023). Comparative pharmacokinetics of seven bioactive components after oral administration of crude and processed Qixue Shuangbu Prescription in chronic heart failure rats by microdialysis combined with UPLC-MS/MS. Journal of Ethnopharmacology, 303, 116035.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, H., Zhang, L. & Yin, K. et al. (2023). Analysis of function role and long noncoding RNA expression in chronic heart failure rats treated with Hui Yang Jiu Ji decoction. Journal of Healthcare Engineering, 2023, 7438567.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gheorghiade, M., Abraham, W. T., & Albert, N. M., et al. (2006). Systolic blood pressure at admission, clinical characteristics, and outcomes in patients hospitalized with acute heart failure. JAMA, 296(18), 2217–2226.

    Article  CAS  PubMed  Google Scholar 

  4. West, R., Liang, L. & Fonarow, G. C. et al. (2011). Characterization of heart failure patients with preserved ejection fraction: a comparison between ADHERE-US registry and ADHERE-International registry. European Journal of Heart Failure, 13(9), 945–952.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Towbin, J. A. (2014). Inherited cardiomyopathies. Circulation Journal, 78(10), 2347–2356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Epelman, S., Liu, P. P. & Mann, D. L. (2015). Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nature Reviews Immunology, 15(2), 117–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Heidenreich, P. A., Bozkurt, B., & Aguilar, D., et al. (2022). 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation, 145(18), e895–e1032.

    PubMed  Google Scholar 

  8. Mascolo, A., di Mauro, G. & Cappetta, D. et al. (2022). Current and future therapeutic perspective in chronic heart failure. Pharmacological Research, 175, 106035

    Article  CAS  PubMed  Google Scholar 

  9. McDonagh, T. A., Metra, M. & Adamo, M. et al. (2023). 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. European Heart Journal, 44(37), 3627–3639.

    Article  CAS  PubMed  Google Scholar 

  10. Yuan, C., Wu, Z., & Jin, C., et al. (2023). Qiangxin recipe improves doxorubicin-induced chronic heart failure by enhancing KLF5-mediated glucose metabolism. Phytomedicine, 112, 154697.

    Article  CAS  PubMed  Google Scholar 

  11. Wang, Y., Wang, Q. & Li, C. et al. (2017). A review of chinese herbal medicine for the treatment of chronic heart failure. Current Pharmaceutical Design, 23(34), 5115–5124.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, Z., Jiang, R. & Wang, L. et al. (2020). Ginsenoside Rg1 improves differentiation by inhibiting senescence of human bone marrow mesenchymal stem cell via GSK-3β and β-catenin. Stem Cells International, 2020, 2365814.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang, S., Wu, H. & Liu, J. et al. (2018). Medication regularity of pulmonary fibrosis treatment by contemporary traditional Chinese medicine experts based on data mining. Journal of Thoracic Disease, 10(3), 1775–1787.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cao, H., Li, C. & Lei, L. et al. (2020). Stachyose improves the effects of berberine on glucose metabolism by regulating intestinal microbiota and short-chain fatty acids in spontaneous type 2 diabetic KKAy mice. Frontiers in Pharmacology, 11, 578943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bulpitt, C. J., Li, Y. & Bulpitt, P. F. et al. (2007). The use of orchids in Chinese medicine. Journal of the Royal Society of Medicine, 100(12), 558–563.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhao, Z. X., Fu, J. & Ma, S. R., et al. (2018). Gut-brain axis metabolic pathway regulates antidepressant efficacy of albiflorin. Theranostics, 8(21), 5945–5959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, Y., Li, W. & Chen, T. T. et al. (2020). Chemical fingerprint analysis and ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry-based metabolomics study of the protective effect of buxue yimu granule in medical-induced incomplete abortion rats. Frontiers in Pharmacology, 11, 578217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu, Y., Xu, S. & Tian, X. Y. (2020). The effect of salvianolic acid on vascular protection and possible mechanisms. Oxidative Medicine and Cellular Longevity, 2020, 5472096.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fan, Q., Liu, Y. & Rao, J. et al. (2020). Anti-atherosclerosis effect of angong Niuhuang Pill via regulating Th17/Treg immune balance and inhibiting chronic inflammatory on ApoE-/- mice model of early and mid-term atherosclerosis. Frontiers in Pharmacology, 10, 1584.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li, Q., Bai, C. & Yang, R. et al. (2020). Deciphering the pharmacological mechanisms of Ma Xing Shi Gan decoction against COVID-19 through integrating network pharmacology and experimental exploration. Frontiers in Pharmacology, 11, 581691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, R., Zhu, X. & Bai, H. et al. (2019). Network pharmacology databases for traditional Chinese Medicine: Review and assessment. Frontiers in Pharmacology, 10, 123.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang, X., Wang, Z. Y. & Zheng, J. H. et al. (2021). TCM network pharmacology: A new trend towards combining comutational, experimental and clinical approaches. Chinese Journal of Natural Medicines, 19, 1–11.

    Article  PubMed  Google Scholar 

  23. Sharma, J., Bhardwaj, V. K. & Das, P. et al. (2021). Identification of naturally originated molecules as γ-aminobutyric acid receptor antagonist. Journal of Biomolecular Structure and Dynamics, 39(3), 911–922.

    Article  CAS  PubMed  Google Scholar 

  24. Kumar, A., Rajendran, V. & Sethumadhavan, R., et al. (2013). Molecular dynamic simulation reveals damaging impact of RAC1 F28L mutation in the switch I region. PLoS One, 8(10), e77453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kumar, A., Rajendran, V. & Sethumadhavan, R. et al. (2013). Evidence of colorectal cancer-associated mutation in MCAK: a computational report. Cell Biochemistry and Biophysics, 67(3), 837–851.

    Article  CAS  PubMed  Google Scholar 

  26. Singh, R., Bhardwaj, V. K. & Sharma, J. et al. (2022). Identification of selective cyclin-dependent kinase 2 inhibitor from the library of pyrrolone-fused benzosuberene compounds: an in silico exploration. Journal of Biomolecular Structure and Dynamics, 40(17), 7693–7701.

    Article  CAS  PubMed  Google Scholar 

  27. Kumar, A., Rajendran, V. & Sethumadhavan, R. et al. (2014). Computational SNP analysis: current approaches and future prospects. Cell Biochemistry and Biophysics, 68(2), 233–239.

    Article  CAS  PubMed  Google Scholar 

  28. Kumar, S., Sinha, K. & Sharma, R. et al. (2019). Phloretin and phloridzin improve insulin sensitivity and enhance glucose uptake by subverting PPARγ/Cdk5 interaction in differentiated adipocytes. Experimental Cell Research, 383(1), 111480.

    Article  CAS  PubMed  Google Scholar 

  29. Ru, J., Li, P. & Wang, J. et al. (2014). TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. Journal of Cheminformatics, 6, 13.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fang, S., Dong, L. & Liu, L. et al. (2021). HERB: a high-throughput experiment- and reference-guided database of traditional Chinese medicine. Nucleic Acids Research, 49, D1197–D1206.

    Article  CAS  PubMed  Google Scholar 

  31. Wang, J. & Hou, T. (2015). Advances in computationally modeling human oral bioavailability. Advanced Drug Delivery Reviews, 86, 11–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, J., Zhou, Y. & Ma, Z. (2021). Multi-target mechanism of Tripteryguim wilfordii Hook for treatment of ankylosing spondylitis based on network pharmacology and molecular docking. Annals of Medicine, 53, 1090–1098.

    Article  PubMed  Google Scholar 

  33. Xu, X., Zhang, W. & Huang, C. et al. (2012). A novel chemometric method for the prediction of human oral bioavailability. International Journal of Molecular Sciences, 13, 6964–6982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Daina, A., Michielin, O. & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Daina, A., Michielin, O. & Zoete, V. (2019). SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47, W357–W364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Guo, X., Ji, J., & Jose Kumar Sreena, G. S., et al. (2020). Computational Prediction of Antiangiogenesis Synergistic Mechanisms of Total Saponins of Panax japonicus Against Rheumatoid Arthritis. Front Pharmacol, 11, 566129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. UniProt Consortium. (2023). UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Research, 51, D523–D531..

  38. Shannon, P., Markiel, A. & Ozier, O. et al. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498–2504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Barrett, T., Wilhite, S. E. & Ledoux, P. et al. (2013). NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Research, 41, D991–D995.

    Article  CAS  PubMed  Google Scholar 

  40. Smih, F., Desmoulin, F., & Berry, M., et al. (2011). Blood signature of pre-heart failure: a microarrays study. PLoS One, 6, e20414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou, G., Soufan, O. & Ewald, J. et al. (2019). NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Research, 47, W234–W241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Szklarczyk, D., Kirsch, R. & Koutrouli, M. et al. (2023). The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Research, 51, D638–D646.

    Article  CAS  PubMed  Google Scholar 

  43. Yu, G., Wang, L. G., & Han, Y., et al. (2012). clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS, 16, 284–287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Walter, W., Sánchez-Cabo, F., & Ricote, M. (2015). GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics, 31, 2912–2914.

    Article  CAS  PubMed  Google Scholar 

  45. O’Boyle, N. M., Banck, M. & James, C. A. et al. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3, 33.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wang, Y. H., Zhou, M. Z. & Ye, T. et al. (2022). Discovery of a Series of 5-Amide-1H-pyrazole-3-carboxyl Derivatives as Potent P2Y(14)R antagonists with anti-inflammatory characters. Journal of Medicinal Chemistry, 65, 15967–15990.

    Article  CAS  PubMed  Google Scholar 

  47. Li, X., Wei, S. & Niu, S. et al. (2022). Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu Decoction against sepsis. Computers in Biology and Medicine, 144, 105389.

    Article  CAS  PubMed  Google Scholar 

  48. Tang, S., Liu, Y. & Liu, B. (2022). Integrated bioinformatics analysis reveals marker genes and immune infiltration for pulmonary arterial hypertension. Scientific Reports, 12, 10154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shang, L., Wang, Y. & Li, J. et al. (2023). Mechanism of Sijunzi Decoction in the treatment of colorectal cancer based on network pharmacology and experimental validation. Journal of Ethnopharmacology, 302(Pt A), 115876.

    Article  CAS  PubMed  Google Scholar 

  50. Du, L., Du, D. H. & Chen, B. et al. (2020). Anti-inflammatory activity of sanjie zhentong capsule assessed by network pharmacology analysis of adenomyosis treatment. Drug Design, Development and Therapy, 14, 697–713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu, J., Yang, Y., & Zeng, Y., et al. (2023). Exploring the mechanism of physcion-1-O-β-D-monoglucoside against acute lymphoblastic leukaemia based on network pharmacology and experimental validation. Heliyon, 9(3), e14009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dutkiewicz, Z. & Mikstacka, R. (2018). Structure-based drug design for cytochrome P450 family 1 inhibitors. Bioinorganic Chemistry and Applications, 2018, 3924608.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Vora, J., Athar, M. & Sinha, S. et al. (2020). Binding insight of Anti-HIV phytocompounds with prime targets of HIV: A molecular dynamics simulation analysis. Current HIV Research, 18, 132–141.

    Article  CAS  PubMed  Google Scholar 

  54. Liu, J., Rong, Q., & Zhang, C., et al. (2023). The mechanism of mori folium and eucommiae cortex against cyclophosphamide-induced immunosuppression integrating network pharmacology, molecular docking, molecular dynamics simulations, and experimental validation. Metabolites, 13, 1151.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gąsiorowski, A. & Dutkiewicz, J. (2013). Comprehensive rehabilitation in chronic heart failure. Annals of Agricultural and Environmental Medicine, 20, 606–612.

    PubMed  Google Scholar 

  56. Chang, X., Zhang, T. & Wang, J. et al. (2021). SIRT5-related desuccinylation modification contributes to quercetin-induced protection against heart failure and high-glucose-prompted cardiomyocytes injured through regulation of mitochondrial quality surveillance. Oxidative Medicine and Cellular Longevity, 2021, 5876841.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wang, S. H., Tsai, K. L. & Chou, W. C. et al. (2022). Quercetin mitigates cisplatin-induced oxidative damage and apoptosis in cardiomyocytes through Nrf2/HO-1 signaling pathway. The American Journal of Chinese Medicine, 50, 1281–1298.

    Article  CAS  PubMed  Google Scholar 

  58. Maksymchuk, O., Shysh, A. & Kotliarova, A. (2023). Quercetin inhibits the expression of MYC and CYP2E1 and reduces oxidative stress in the myocardium of spontaneously hypertensive rats. Acta Biochimica Polonica, 70, 199–204.

    CAS  PubMed  Google Scholar 

  59. Erlund, I., Kosonen, T. & Alfthan, G. et al. (2000). Pharmacokinetics of quercetin from quercetin aglycone and rutin in healthy volunteers. European Journal of Clinical Pharmacology, 56(8), 545–553.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang, L., Guo, Z. & Wang, Y. et al. (2019). The protective effect of kaempferol on heart via the regulation of Nrf2, NF-kappabeta, and PI3K/Akt/GSK-3beta signaling pathways in isoproterenol-induced heart failure in diabetic rats. Drug Development Research, 80, 294–309.

    Article  CAS  PubMed  Google Scholar 

  61. Du, Y., Han, J. & Zhang, H. et al. (2019). Kaempferol prevents against Ang II-induced cardiac remodeling through attenuating Ang II-induced inflammation and oxidative stress. Journal of Cardiovascular Pharmacology, 74, 326–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zabela, V., Sampath, C., & Oufir, M., et al. (2016). Pharmacokinetics of dietary kaempferol and its metabolite 4-hydroxyphenylacetic acid in rats. Fitoterapia, 115, 189–197.

    Article  CAS  PubMed  Google Scholar 

  63. Wong, H. S., Chen, N. & Leong, P. K. et al. (2014). beta-Sitosterol enhances cellular glutathione redox cycling by reactive oxygen species generated from mitochondrial respiration: protection against oxidant injury in H9c2 cells and rat hearts. Phytotherapy Research, 28, 999–1006.

    Article  CAS  PubMed  Google Scholar 

  64. Koc, K., Geyikoglu, F. & Cakmak, O. et al. (2021). The targets of beta-sitosterol as a novel therapeutic against cardio-renal complications in acute renal ischemia/reperfusion damage. Naunyn-Schmiedeberg's Archives of Pharmacology, 394, 469–479.

    Article  CAS  Google Scholar 

  65. Salen, G., Ahrens, E. H. & Grundy, S. M. (1970). Metabolism of beta-sitosterol in man. Journal of Clinical Investigation, 49(5), 952–967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. He, F., Xu, B. L. & Chen, C. et al. (2016). Methylophiopogonanone A suppresses ischemia/reperfusion-induced myocardial apoptosis in mice via activating PI3K/Akt/eNOS signaling pathway. Acta Pharmacologica Sinica, 37, 763–771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wu, X., Sun, S. & Wu, X. et al. (2022). Identification of the metabolites of methylophiopogonanone A by ultra-high-performance liquid chromatography combined with high-resolution mass spectrometry. Rapid Communications in Mass Spectrometry, 36(12), e9304.

    Article  CAS  PubMed  Google Scholar 

  68. Radosinska, J., Barancik, M. & Vrbjar, N. (2017). Heart failure and role of circulating MMP-2 and MMP-9. Panminerva Medica, 59, 241–253.

    Article  PubMed  Google Scholar 

  69. Yabluchanskiy, A., Ma, Y., & Iyer, R. P., et al. (2013). Matrix metalloproteinase-9: Many shades of function in cardiovascular disease. Physiology (Bethesda), 28, 391–403.

    CAS  PubMed  Google Scholar 

  70. Nandi, S. S., Katsurada, K. & Sharma, N. M. et al. (2020). MMP9 inhibition increases autophagic flux in chronic heart failure. The American Journal of Physiology-Heart and Circulatory Physiology, 319, 1414–1437.

    Article  Google Scholar 

  71. Dai, B., Cui, M. & Zhu, M. et al. (2013). STAT1/3 and ERK1/2 synergistically regulate cardiac fibrosis induced by high glucose. Cellular Physiology and Biochemistry, 32, 960–971.

    Article  CAS  PubMed  Google Scholar 

  72. Sandek, A., Gertler, C. & Valentova, M. et al. (2024). Increased expression of proinflammatory genes in peripheral blood cells is associated with cardiac cachexia in patients with heart failure with reduced ejection fraction. Journal of Clinical Medicine, 13(3), 733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wu, L., Archacki, S. R. & Zhang, T. et al. (2007). Induction of high STAT1 expression in transgenic mice with LQTS and heart failure. Biochemical and Biophysical Research Communications, 358, 449–454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Scarabelli, T. M., Mariotto, S. & Abdel-Azeim, S. et al. (2009). Targeting STAT1 by myricetin and delphinidin provides efficient protection of the heart from ischemia/reperfusion-induced injury. FEBS Letters, 583, 531–541.

    Article  CAS  PubMed  Google Scholar 

  75. Cui, J., Zhu, L., & Xia, X., et al. (2010). NLRC5 negatively regulates the NF-kappaB and type I interferon signaling pathways. Cell, 141, 483–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tsuchiya Y., Asano T., Nakayama K., et al. Nuclear IKKbeta is an adaptor protein for IkappaBalpha ubiquitination and degradation in UV-induced NF-kappaB activation. Molecular Cell 39, 570-582.

  77. Patel, V., Carrion, K. & Hollands, A. et al. (2015). The stretch responsive microRNA miR-148a-3p is a novel repressor of IKBKB, NF-kappaB signaling, and inflammatory gene expression in human aortic valve cells. The FASEB Journal, 29, 1859–1868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wakatsuki, S., Suzuki, J. & Ogawa, M. et al. (2008). A novel IKK inhibitor suppresses heart failure and chronic remodeling after myocardial ischemia via MMP alteration. Expert Opinion on Therapeutic Targets, 12(12), 1469–1476.

    Article  CAS  PubMed  Google Scholar 

  79. Dong, P. L., Li, H. & Yu, X. J. et al. (2022). Effect and mechanism of “Danggui-kushen” herb pair on ischemic heart disease. Biomedicine & Pharmacotherapy, 145, 112450.

    Article  Google Scholar 

  80. Shi, Y., An, J. & Liang, J. et al. (1999). Characterization of a mutant pancreatic eIF-2alpha kinase, PEK, and co-localization with somatostatin in islet delta cells. Journal of Biological Chemistry, 274, 5723–5730.

    Article  CAS  PubMed  Google Scholar 

  81. You, K., Wang, L. & Chou, C. H., et al. (2021). QRICH1 dictates the outcome of ER stress through transcriptional control of proteostasis. Science, 371, 6524.

    Article  Google Scholar 

  82. Arrieta, A., Blackwood, E. A. & Glembotski, C. C. (2018). ER protein quality control and the unfolded protein response in the heart. Current Topics in Microbiology and Immunology, 414, 193–213.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Gao, G., Xie, A. & Zhang, J. et al. (2013). Unfolded protein response regulates cardiac sodium current in systolic human heart failure. Circulation: Arrhythmia and Electrophysiology, 6, 1018–1024.

    CAS  PubMed  Google Scholar 

  84. Petri, E. T., Errico, A., & Escobedo, L., et al. (2007). The crystal structure of human cyclin B. Cell Cycle, 6, 1342–1349.

    Article  CAS  PubMed  Google Scholar 

  85. Bao, L., Odell, A. F., & Stephen, S. L., et al. (2012). The S100A6 calcium-binding protein regulates endothelial cell-cycle progression and senescence. FEBS Journal, 279, 4576–4588.

    Article  CAS  PubMed  Google Scholar 

  86. Yang, D., Fu, W. & Li, L. et al. (2017). Therapeutic effect of a novel Wnt pathway inhibitor on cardiac regeneration after myocardial infarction. Clinical Science, 131, 2919–2932.

    Article  CAS  PubMed  Google Scholar 

  87. Abouleisa, R. R. E., Salama, A. B. M., & Ou, Q., et al. (2022). Transient cell cycle induction in cardiomyocytes to treat subacute ischemic heart failure. Circulation, 145(17), 1339–1355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jakob, S., Schroeder, P. & Lukosz, M. et al. (2008). Nuclear protein tyrosine phosphatase Shp-2 is one important negative regulator of nuclear export of telomerase reverse transcriptase. Journal of Biological Chemistry, 283, 33155–33161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lee, H. H. & Chang, Z. F. (2008). Regulation of RhoA-dependent ROCKII activation by Shp2. Journal of Cell Biology, 181, 999–1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Noda, S., Takahashi, A. & Hayashi, T. et al. (2016). Determination of the catalytic activity of LEOPARD syndrome-associated SHP2 mutants toward parafibromin, a bona fide SHP2 substrate involved in Wnt signaling. Biochemical and Biophysical Research Communications, 469, 1133–1139.

    Article  CAS  PubMed  Google Scholar 

  91. Kontaridis, M. I., Yang, W., & Bence, K. K., et al. (2008). Deletion of Ptpn11 (Shp2) in cardiomyocytes causes dilated cardiomyopathy via effects on the Erk/MAPK and RhoA signaling pathways. Circulatio, 117, 1423–1435.

    Article  CAS  Google Scholar 

  92. Daoud, E. & Zwick, D. (2019). Noonan syndrome case report: PTPN11 and other potential genetic factors contributing to lethal hypertrophic right ventricular cardiomyopathy. Pediatric and Developmental Pathology, 22, 386–390.

    Article  PubMed  Google Scholar 

  93. Tabib, A., Talebi, T. & Ghasemi, S. et al. (2022). A novel stop-gain pathogenic variant in FLT4 and a nonsynonymous pathogenic variant in PTPN11 associated with congenital heart defects. European Journal of Medical Research, 27, 286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang, Y., Zhao, H. & Xu, W. et al. (2019). High expression of PQBP1 and low expression of PCK2 are associated with metastasis and recurrence of osteosarcoma and unfavorable survival outcomes of the patients. Journal of Cancer, 10(9), 2091–2101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhao, X., Ren, Y. & Ren, H. et al. (2021). The mechanism of myocardial fibrosis is ameliorated by myocardial infarction-associated transcript through the PI3K/Akt signaling pathway to relieve heart failure. Journal of International Medical Research, 49(7), 3000605211031433.

    Article  CAS  PubMed  Google Scholar 

  96. Guo, D., Zheng, Q. H. & Wang, D. et al. (2024). Investigation on the mechanism of Qiangxinhuoli prescription in the treatment of chronic heart failure based on p38-MAPK signaling pathway. Traditional Medicine Research, 9(7), 38.

    Article  Google Scholar 

  97. Tang, Y., Xu, Z., Chen, X. et al. (2021). Effects of enalapril on TLR2/NF-κB signaling pathway and inflammatory factors in rabbits with chronic heart failure. Evidence-Based Complementary and Alternative Medicine, 2021, 9594607.

  98. Zhang, Y., Zhu, M. & Zhang, F. et al. (2019). Integrating pharmacokinetics study, network analysis, and experimental validation to uncover the mechanism of qiliqiangxin capsule against chronic heart failure. Frontiers in Pharmacology, 10, 1046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bolli, R., Dawn, B. & Xuan, Y. T. (2003). Role of the JAK-STAT pathway in protection against myocardial ischemia/reperfusion injury. Trends in Cardiovascular Medicine, 13(2), 72–79.

    Article  CAS  PubMed  Google Scholar 

  100. Barry, S. P., Townsend, P. A. & Latchman, D. S. et al. (2007). Role of the JAK-STAT pathway in myocardial injury. Trends in Molecular Medicine, 13(2), 82–89.

    Article  CAS  PubMed  Google Scholar 

  101. Protti, A., Mongue-Din, H. & Mylonas, K. J. et al. (2016). Bone marrow transplantation modulates tissue macrophage phenotype and enhances cardiac recovery after subsequent acute myocardial infarction. Journal of Molecular and Cellular Cardiology, 90, 120–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. De Angelis, E., Pecoraro, M. & Rusciano, M. R. et al. (2019). Cross-talk between neurohormonal pathways and the immune system in heart failure: A review of the literature. International Journal of Molecular Sciences, 20(7), 1698.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Yi, T., Chen, Y., & Wang, L., et al. (2009). Reciprocal differentiation and tissue-specific pathogenesis of Th1, Th2, and Th17 cells in graft-versus-host disease. Blood, 114(14), 3101–3112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gröschel, C., Sasse, A. & Röhrborn, C. et al. (2017). T helper cells with specificity for an antigen in cardiomyocytes promote pressure overload-induced progression from hypertrophy to heart failure. Scientific Reports, 7(1), 15998.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Liu, L., Jiao, Y. & Yang, M. et al. (2023). Network pharmacology, molecular docking and molecular dynamics to explore the potential immunomodulatory mechanisms of deer antler. International Journal of Molecular Sciences, 24, 10370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tinberg, C. E., Khare, S. D., & Dou, J., et al. (2013). Computational design of ligand-binding proteins with high affinity and selectivity. Nature, 501, 212–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author contributions

Wei Cheng: Writing. Bofeng Zhang: Data curation. Na Chen: Software. Qun Liu: Validation. Xin Ma: Validation. Xiao Fu: Validation. Min Xu: Supervision, Project administration, Funding acquisition. All authors reviewed the manuscript. All authors contributed to the work and approved the final manuscript.

Funding

This work was financially supported by the Inheritance Studio Construction Project of National Famous Old Traditional Chinese Medicine (Zhang Hongxing) (No. GZYYRJH [2022]75).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, W., Zhang, BF., Chen, N. et al. Molecular Mechanism of Yangshen Maidong Decoction in the Treatment of Chronic Heart Failure based on Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulations. Cell Biochem Biophys (2024). https://doi.org/10.1007/s12013-024-01297-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12013-024-01297-7

Keywords

Navigation