Skip to main content

Advertisement

Log in

Primary Protection of Diosmin Against Doxorubicin Cardiotoxicity via Inhibiting Oxido-Inflammatory Stress and Apoptosis in Rats

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Doxorubicin (DOX) is the cornerstone of chemotherapy. However, it has dose-dependent cardiotoxic events that limit its clinical use. This study was intended to investigate the efficiency of DOX as an anti-cancer against the MCF-7 cell line in the presence of diosmin (DIO) and to appraise the protective impact of DIO against DOX cardiotoxicity in vivo. In vitro study was carried out to establish the conservation of DOX cytotoxicity in the presence of DIO. In vivo study was conducted on 42 adult female Wistar rats that were equally allocated into 6 groups; control, DIO (100 mg/kg), DIO (200 mg/kg), DOX (20 mg/kg, single dose i.p.), DIO (100 mg/kg) + DOX, received DIO orally (100 mg/kg) for 30 days, then administrated with a single dose of DOX and DIO (200 mg/kg) + DOX, received DIO orally (200 mg/kg) for 30 days, then administrated with DOX. In vitro study showed preservation of cytotoxic activity of DOX on MCF-7 in the presence of DIO. In vivo study indicated that DOX altered electrocardiograph (ECG) parameters. Also, it yielded a significant rise in CK-MB, cTnT and LDH serum levels and cardiac contents of MDA, IL-1β; paralleled by a significant drop in cardiac IL-10 and SOD. Moreover, significant upregulation of Bax, TNF-α, and HIF-1α, in concomitant with significant downregulation of Bcl-2 mRNA in cardiac tissue have been recorded in the DOX group. Furthermore, histopathological description of cardiac tissues showed that DOX alters normal cardiac histoarchitecture. On the opposite side, DIO pretreatment could ameliorate ECG parameters, suppress IL-1β and enhanceIL-10, promote activity of SOD and repress MDA. Additionally, downregulation of Bax, TNF-α, HIF-1α and upregulation of Bcl-2 have been demonstrated in DIO-pretreated rats. Furthermore, the histopathological examination of cardiac tissues illustrated that DIO had a favorable impact on the protection of heart histoarchitecture. DIO is suggested for protection against acute cardiotoxicity caused by DOX without affecting antitumor activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Attachaipanich, T., Chattipakorn, S. C., & Chattipakorn, N. (2023). Potential roles of melatonin in doxorubicin-induced cardiotoxicity: From cellular mechanisms to clinical application. Pharmaceutics, 15(3), 785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cheah, I. K., Tang, R. M., Wang, X., Sachaphibulkij, K., Chong, S. Y., Lim, L. H., & Halliwell, B. (2023). Protection against doxorubicin-induced cardiotoxicity by ergothioneine. Antioxidants, 12(2), 320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Raj, P., Louis, X. L., Thandapilly, S. J., Movahed, A., Zieroth, S., & Netticadan, T. (2014). Potential of resveratrol in the treatment of heart failure. Life Sciences, 95(2), 63–71.

    Article  CAS  PubMed  Google Scholar 

  4. Swain, S. M., Whaley, F. S., & Ewer, M. S. (2003). Congestive heart failure in patients treated with doxorubicin: A retrospective analysis of three trials. Cancer: Interdisciplinary International Journal of the American Cancer Society, 97(11), 2869–2879.

    Article  CAS  Google Scholar 

  5. Rawat, P. S., Jaiswal, A., Khurana, A., Bhatti, J. S., & Navik, U. (2021). Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. Biomedicine & Pharmacotherapy, 139, 111708.

    Article  CAS  Google Scholar 

  6. Li, S., Amat, D., Peng, Z., Vanni, S., Raskin, S., De Angulo, G., & Leblanc, R. M. (2016). Transferrin conjugated nontoxic carbon dots for doxorubicin delivery to target pediatric brain tumor cells. Nanoscale, 8(37), 16662–16669.

    Article  CAS  PubMed  Google Scholar 

  7. Menna, P., & Salvatorelli, E. (2017). Primary prevention strategies for anthracycline cardiotoxicity: A brief overview. Chemotherapy, 62(3), 159–168.

    Article  CAS  PubMed  Google Scholar 

  8. Rocha, P. D. S. D., Campos, J. F., Nunes-Souza, V., Vieira, M. D. C., Boleti, A. P. D. A., Rabelo, L. A., & de Picoli Souza, K. (2018). Antioxidant and protective effects of schinus terebinthifolius raddi against doxorubicin-induced toxicity. Applied Biochemistry and Biotechnology, 184, 869–884.

    Article  PubMed  Google Scholar 

  9. Jang, H. M., Lee, J. Y., An, H. S., Ahn, Y. J., Jeong, E. A., Shin, H. J., & Roh, G. S. (2022). LCN2 deficiency ameliorates doxorubicin-induced cardiomyopathy in mice. Biochemical and Biophysical Research Communications, 588, 8–14.

    Article  CAS  PubMed  Google Scholar 

  10. Seara, F. A., Kasai-Brunswick, T. H., Nascimento, J. H., & Campos-de-Carvalho, A. C. (2022). Anthracycline-induced cardiotoxicity and cell senescence: New therapeutic option? Cellular and Molecular Life Sciences, 79(11), 568.

    Article  CAS  PubMed  Google Scholar 

  11. Cheng, X., Liu, D., Song, H., Tian, X., Yan, C., & Han, Y. (2021). Overexpression of Kininogen-1 aggravates oxidative stress and mitochondrial dysfunction in DOX-induced cardiotoxicity. Biochemical and Biophysical Research Communications, 550, 142–150.

    Article  CAS  PubMed  Google Scholar 

  12. Mizuta, Y., Akahoshi, T., Eto, H., Hyodo, F., Murata, M., Tokuda, K., & Yamaura, K. (2022). Noninvasive diagnosis of the mitochondrial function of doxorubicin-induced cardiomyopathy using in vivo dynamic nuclear polarization–magnetic resonance imaging. Antioxidants, 11(8), 1454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kajarabille, N., & Latunde-Dada, G. O. (2019). Programmed cell-death by ferroptosis: Antioxidants as mitigators. International Journal of Molecular Sciences, 20(19), 4968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kourek, C., Touloupaki, M., Rempakos, A., Loritis, K., Tsougkos, E., Paraskevaidis, I., & Briasoulis, A. (2022). Cardioprotective strategies from cardiotoxicity in cancer patients: A comprehensive review. Journal of Cardiovascular Development and Disease, 9(8), 259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Injac, R., Boskovic, M., Perse, M., Koprivec-Furlan, E., Cerar, A., Djordjevic, A., & Strukelj, B. (2008). Acute doxorubicin nephrotoxicity in rats with malignant neoplasm can be successfully treated with fullerenol C60 (OH) 24 via suppression of oxidative stress. Pharmacological Reports, 60(5), 742.

    CAS  PubMed  Google Scholar 

  16. Salzer, W. L., Devidas, M., Carroll, W. L., Winick, N., Pullen, J., Hunger, S. P., & Camitta, B. A. (2010). Long-term results of the pediatric oncology group studies for childhood acute lymphoblastic leukemia 1984–2001: A report from the children’s oncology group. Leukemia, 24(2), 355–370.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, Y., Ma, X. Y., Zhang, T., Qin, M., Sun, B., Li, Q., Hu, D.-W., & Ren, L. Q. (2019). Protective effects of apocynum venetum against pirarubicin-induced cardiotoxicity. The American Journal of Chinese Medicine, 47(05), 1075–1097.

    Article  CAS  PubMed  Google Scholar 

  18. Jones, R. L. (2008). Utility of dexrazoxane for the reduction of anthracycline-induced cardiotoxicity. Expert Review of Cardiovascular Therapy, 6(10), 1311–1317.

    Article  CAS  PubMed  Google Scholar 

  19. Silber, J. H. (2004). Can dexrazoxane reduce myocardial injury in anthracycline-treated children with acute lymphoblastic leukemia? Nature Clinical Practice Oncology, 1(1), 16–17.

    Article  PubMed  Google Scholar 

  20. Shaikh, F., Dupuis, L. L., Alexander, S., Gupta, A., Mertens, L., & Nathan, P. C. (2015). Cardioprotection and second malignant neoplasms associated with dexrazoxane in children receiving anthracycline chemotherapy: A systematic review and meta-analysis. JNCI: Journal of the National Cancer Institute, 108(4), djv357.

    Article  PubMed  Google Scholar 

  21. Psotová, J. (2004). Chemoprotective effect of plant phenolics against anthracycline-induced toxicity on rat cardiomyocytes. Part III. Apigenin, baicalelin, kaempherol, luteolin and quercetin. Phytotherapy Research, 18, 516–521.

    Article  PubMed  Google Scholar 

  22. Eraslan, G., Sarıca, Z. S., Bayram, L. Ç., Tekeli, M. Y., Kanbur, M., & Karabacak, M. (2017). The effects of diosmin on aflatoxin-induced liver and kidney damage. Environmental Science and Pollution Research, 24, 27931–27941.

    Article  CAS  PubMed  Google Scholar 

  23. Rashid, S., Ali, N., Nafees, S., Ahmad, S. T., Arjumand, W., Hasan, S. K., & Sultana, S. (2013). Alleviation of doxorubicin-induced nephrotoxicity and hepatotoxicity by chrysin in Wistar rats. Toxicology Mechanisms and Methods, 23(5), 337–345.

    Article  CAS  PubMed  Google Scholar 

  24. Ağır, M. S., & Eraslan, G. (2019). The effect of diosmin against liver damage caused by cadmium in rats. Journal of Food Biochemistry, 43(9), e12966.

    Article  PubMed  Google Scholar 

  25. Shalkami, A. S., Hassan, M. I. A., & Bakr, A. G. (2018). Anti-inflammatory, antioxidant and anti-apoptotic activity of diosmin in acetic acid-induced ulcerative colitis. Human & Experimental Toxicology, 37(1), 78–86.

    Article  CAS  Google Scholar 

  26. Abdel-Daim, M. M., Khalifa, H. A., Abushouk, A. I., Dkhil, M. A., & Al-Quraishy, S. A. (2017). Diosmin attenuates methotrexate-induced hepatic, renal, and cardiac injury: A biochemical and histopathological study in mice. Oxidative Medicine and Cellular Longevity, 2017, 3281670.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., & Boyd, M. R. (1990). New colorimetric cytotoxicity assay for anticancer-drug screening. JNCI: Journal of the National Cancer Institute, 82(13), 1107–1112.

    Article  CAS  PubMed  Google Scholar 

  28. Mahgoub, S., Sallam, A. O., Sarhan, H. K., Ammar, A. A., & Soror, S. H. (2020). Role of Diosmin in protection against the oxidative stress induced damage by gamma-radiation in Wistar albino rats. Regulatory Toxicology and Pharmacology, 113, 104622.

    Article  CAS  PubMed  Google Scholar 

  29. Rehman, Tahir, M. U., Khan, M., Khan, A. Q., Oday-O-Hamiza, R., Lateef, A., & Sultana, S. (2014). D-limonene suppresses doxorubicin-induced oxidative stress and inflammation via repression of COX-2, iNOS, and NFκB in kidneys of Wistar rats. Experimental Biology and Medicine, 239(4), 465–476.

    Article  PubMed  Google Scholar 

  30. Hajrasouliha, A. R., Tavakoli, S., Jabehdar-Maralani, P., Shafaroodi, H., Borhani, A. A., Houshmand, G., & Dehpour, A. R. (2004). Resistance of cholestatic rats against epinephrine-induced arrhythmia: The role of nitric oxide and endogenous opioids. European Journal of Pharmacology, 499(3), 307–313.

    Article  CAS  PubMed  Google Scholar 

  31. Mustafa, H. N., Hegazy, G. A., El Awdan, S. A., & AbdelBaset, M. (2017). Protective role of CoQ10 or L-carnitine on the integrity of the myocardium in doxorubicin induced toxicity. Tissue and Cell, 49(3), 410–426.

    Article  CAS  PubMed  Google Scholar 

  32. Banchroft, J. D., Stevens, A., & Turner, D. R. (1996) Theory and practice of histological techniques (4th ed.). Churchill Livingstone.

  33. McGowan, J. V., Chung, R., Maulik, A., Piotrowska, I., Walker, J. M., & Yellon, D. M. (2017). Anthracycline chemotherapy and cardiotoxicity. Cardiovascular Drugs and Therapy, 31, 63–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mitry, M. A., & Edwards, J. G. (2016). Doxorubicin induced heart failure: Phenotype and molecular mechanisms. IJC Heart & Vasculature, 10, 17–24.

    Article  Google Scholar 

  35. Nebigil, C. G., & Désaubry, L. (2018). Updates in anthracycline-mediated cardiotoxicity. Frontiers in Pharmacology, 9, 1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Angsutararux, P., Luanpitpong, S., & Issaragrisil, S. (2015). Chemotherapy-induced cardiotoxicity: Overview of the roles of oxidative stress. Oxidative Medicine and Cellular Longevity, 2015, 795602.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Xiao, J., Sun, G. B., Sun, B., Wu, Y., He, L., Wang, X., & Sun, X. B. (2012). Kaempferol protects against doxorubicin-induced cardiotoxicity in vivo and in vitro. Toxicology, 292(1), 53–62.

    Article  CAS  PubMed  Google Scholar 

  38. Goyal, V., Bews, H., Cheung, D., Premecz, S., Mandal, S., Shaikh, B., & Jassal, D. S. (2016). The cardioprotective role of N-acetyl cysteine amide in the prevention of doxorubicin and trastuzumab–mediated cardiac dysfunction. Canadian Journal of Cardiology, 32(12), 1513–1519.

    Article  PubMed  Google Scholar 

  39. Cappetta, D., Rossi, F., Piegari, E., Quaini, F., Berrino, L., Urbanek, K., & De Angelis, A. (2018). Doxorubicin targets multiple players: A new view of an old problem. Pharmacological Research, 127, 4–14.

    Article  CAS  PubMed  Google Scholar 

  40. Annapurna, A., Reddy, C. S., Akondi, R. B., & Rao, S. R. (2009). Cardioprotective actions of two bioflavonoids, quercetin and rutin, in experimental myocardial infarction in both normal and streptozotocin-induced type I diabetic rats. Journal of Pharmacy and Pharmacology, 61(10), 1365–1374.

    Article  CAS  PubMed  Google Scholar 

  41. Ammar, E. S. M., Said, S. A., El-Damarawy, S. L., & Suddek, G. M. (2013). Cardioprotective effect of grape-seed proanthocyanidins on doxorubicin-induced cardiac toxicity in rats. Pharmaceutical Biology, 51(3), 339–344.

    Article  CAS  PubMed  Google Scholar 

  42. Momin, F. N., Kalai, B. R., Shikalgar, T. S., & Naikwade, N. S. (2012). Cardioprotective effect of methanolic extract of Ixora coccinea Linn. leaves on doxorubicin-induced cardiac toxicity in rats. Indian Journal of Pharmacology, 44(2), 178–183.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sandamali, J. A., Hewawasam, R. P., Jayatilaka, K. A., & Mudduwa, L. K. (2020). Cardioprotective potential of Murraya koenigii (L.) Spreng. leaf extract against doxorubicin-induced cardiotoxicity in rats. Evidence-Based Complementary and Alternative Medicine, 2020, 6023737.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Khames, A., Khalaf, M. M., Gad, A. M., Abd El-raouf, O. M., & Kandeil, M. A. (2019). Nicorandil combats doxorubicin–induced nephrotoxicity via amendment of TLR4/P38 MAPK/NFκ-B signaling pathway. Chemico-Biological Interactions, 311, 108777.

    Article  PubMed  Google Scholar 

  45. Dudka, J., Gieroba, R., Korga, A., Burdan, F., Matysiak, W., Jodlowska-Jedrych, B., & Murias, M. (2012). Different effects of resveratrol on dose-related doxorubicin-induced heart and liver toxicity. Evidence-Based Complementary and Alternative Medicine, 2012, 10 .

    Article  Google Scholar 

  46. Quagliariello, V., Vecchione, R., Coppola, C., Di Cicco, C., De Capua, A., Piscopo, G., & Maurea, N. (2018). Cardioprotective effects of nanoemulsions loaded with anti-inflammatory nutraceuticals against doxorubicin-induced cardiotoxicity. Nutrients, 10(9), 1304.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wu, R., Mei, X., Wang, J., Sun, W., Xue, T., Lin, C., & Xu, D. (2019). Zn (ii)-Curcumin supplementation alleviates gut dysbiosis and zinc dyshomeostasis during doxorubicin-induced cardiotoxicity in rats. Food & Function, 10(9), 5587–5604.

    Article  CAS  Google Scholar 

  48. Baiyun, R., Li, S., Liu, B., Lu, J., Lv, Y., Xu, J., & Zhang, Z. (2018). Luteolin-mediated PI3K/AKT/Nrf2 signaling pathway ameliorates inorganic mercury-induced cardiac injury. Ecotoxicology and Environmental Safety, 161, 655–661.

    Article  CAS  PubMed  Google Scholar 

  49. Arunachalam, S., Nagoor Meeran, M. F., Azimullah, S., Sharma, C., Goyal, S. N., & Ojha, S. (2021). Nerolidol attenuates oxidative stress, inflammation, and apoptosis by modulating Nrf2/MAPK signaling pathways in doxorubicin-induced acute cardiotoxicity in rats. Antioxidants, 10(6), 984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Germoush, M. O. (2016). Diosmin protects against cyclophosphamide-induced liver injury through attenuation of oxidative stress, inflammation and apoptosis. International Journal of Pharmacology, 12(6), 644–654.

    Article  CAS  Google Scholar 

  51. Ali, N., AlAsmari, A. F., Imam, F., Ahmed, M. Z., Alqahtani, F., Alharbi, M., & Alanazi, M. M. (2021). Protective effect of diosmin against doxorubicin-induced nephrotoxicity. Saudi Journal of Biological Sciences, 28(8), 4375–4383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Queenthy, S. S., & John, B. (2013). Diosmin exhibits anti-hyperlipidemic effects in isoproterenol induced myocardial infarcted rats. European Journal of Pharmacology, 718(1-3), 213–218.

    Article  CAS  PubMed  Google Scholar 

  53. Elblehi, S. S., El-Sayed, Y. S., Soliman, M. M., & Shukry, M. (2021). Date palm pollen extract avert doxorubicin-induced cardiomyopathy fibrosis and associated oxidative/ nitrosative stress, inflammatory cascade, and apoptosis-targeting Bax/Bcl-2 and Caspase-3 signaling pathways. Animals, 11, 886.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bai, Z., & Wang, Z. (2019). Genistein protects against doxorubicin‐induced cardiotoxicity through Nrf‐2/HO‐1 signaling in mice model. Environmental Toxicology, 34(5), 645–651.

    Article  CAS  PubMed  Google Scholar 

  55. Alanazi, A. M., Fadda, L., Alhusaini, A., Ahmad, R., Hasan, I. H., & Mahmoud, A. M. (2020). Liposomal resveratrol and/or carvedilol attenuate doxorubicin-induced cardiotoxicity by modulating inflammation, oxidative stress and S100A1 in rats. Antioxidants, 9(2), 159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hafez, H. M., & Hassanein, H. (2022). Montelukast ameliorates doxorubicin-induced cardiotoxicity via modulation of p-glycoprotein and inhibition of ROS-mediated TNF-α/NF-κB pathways. Drug and Chemical Toxicology, 45(2), 548–559.

    Article  CAS  PubMed  Google Scholar 

  57. Hu, C., Zhang, X., Zhang, N., Wei, W. Y., Li, L. L., Ma, Z. G., & Tang, Q. Z. (2020). Osteocrin attenuates inflammation, oxidative stress, apoptosis, and cardiac dysfunction in doxorubicin‐induced cardiotoxicity. Clinical and Translational Medicine, 10(3), e124.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bin Jardan, Y. A., Ansari, M. A., Raish, M., Alkharfy, K. M., Ahad, A., Al-Jenoobi, F. I., & Ahmad, A. (2020). Sinapic acid ameliorates oxidative stress, inflammation, and apoptosis in acute doxorubicin-induced cardiotoxicity via the NF-κB-mediated pathway. BioMed Research International, 2020, 3921796.

    Google Scholar 

  59. Elsherbiny, N. M., & El-Sherbiny, M. (2014). Thymoquinone attenuates Doxorubicin-induced nephrotoxicity in rats: Role of Nrf2 and NOX4. Chemico-Biological Interactions, 223, 102–108.

    Article  CAS  PubMed  Google Scholar 

  60. Rashid, M. I., Fareed, M. I., Rashid, H., Aziz, H., Ehsan, N., Khalid, S., & Hakeem, K. R. (2017). Flavonoids and their biological secrets. Plant and Human Health: Phytochemistry and Molecular Aspects, 2, 579–605.

    Google Scholar 

  61. Wali, A. F., Rashid, S., Rashid, S. M., Ansari, M. A., Khan, M. R., Haq, N., Alhareth, D. Y., Ahmad, A., & Rehman, M. U. (2020). Naringenin regulates doxorubicin-induced liver dysfunction: Impact on oxidative stress and inflammation. Plants, 9, 550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ahmed, S., Mundhe, N., Borgohain, M., Chowdhury, L., Kwatra, M., Bolshette, N., & Lahkar, M. (2016). Diosmin modulates the NF-kB signal transduction pathways and downregulation of various oxidative stress markers in alloxan-induced diabetic nephropathy. Inflammation, 39, 1783–1797.

    Article  CAS  PubMed  Google Scholar 

  63. Eisvand, F., Imenshahidi, M., Ghasemzadeh Rahbardar, M., Tabatabaei Yazdi, S. A., Rameshrad, M., Razavi, B. M., & Hosseinzadeh, H. (2022). Cardioprotective effects of alpha‐mangostin on doxorubicin‐induced cardiotoxicity in rats. Phytotherapy Research, 36(1), 506–524.

    Article  CAS  PubMed  Google Scholar 

  64. Kim, Y. I., Park, S. W., Kang, I. J., Shin, M. K., & Lee, M. H. (2015). Activin suppresses LPS-induced Toll-like receptor, cytokine and inducible nitric oxide synthase expression in normal human melanocytes by inhibiting NF-κB and MAPK pathway activation. International Journal of Molecular Medicine, 36(4), 1165–1172.

    Article  CAS  PubMed  Google Scholar 

  65. Xiao, Q., Qu, Z., Zhao, Y., Yang, L., & Gao, P. (2017). Orientin ameliorates LPS-induced inflammatory responses through the inhibitory of the NF-κB pathway and NLRP3 inflammasome. Evidence-Based Complementary and Alternative Medicine, 2017, 2495496.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kerkelä, R., Ilves, M., Pikkarainen, S., Tokola, H., Ronkainen, V. P., Majalahti, T., & Ruskoaho, H. (2011). Key roles of endothelin-1 and p38 MAPK in the regulation of atrial stretch response. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 300(1), R140–R149.

    Article  PubMed  Google Scholar 

  67. Oeckinghaus, A., & Ghosh, S. (2009). The NF-κB family of transcription factors and its regulation. Cold Spring Harbor Perspectives in Biology, 1(4), a000034.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Imam, F., Al-Harbi, N. O., Al-Harbi, M. M., Ansari, M. A., Al-Asmari, A. F., Ansari, M. N., & Alotaibi, M. R. (2018). Apremilast prevent doxorubicin-induced apoptosis and inflammation in heart through inhibition of oxidative stress mediated activation of NF-κB signaling pathways. Pharmacological Reports, 70, 993–1000.

    Article  CAS  PubMed  Google Scholar 

  69. Tahir, M., Rehman, M. U., Lateef, A., Khan, R., Khan, A. Q., Qamar, W., & Sultana, S. (2013). Diosmin protects against ethanol-induced hepatic injury via alleviation of inflammation and regulation of TNF-α and NF-κB activation. Alcohol, 47(2), 131–139.

    Article  CAS  PubMed  Google Scholar 

  70. Ichihara, S., Ichihara, G., Kawai, Y., Osawa, T., & Yamada, Y. (2006). Regulatory role of hypoxia-inducible factor-1α and redox-regulated transcription factor in doxorubicin cardiotoxicity‏. Circulation, 114, 414–415.

    Google Scholar 

  71. van Uden, P., Kenneth, N. S., & Rocha, S. (2008). Regulation of hypoxia-inducible factor-1α by NF-κB. Biochemical Journal, 412(3), 477–484.

    Article  PubMed  Google Scholar 

  72. Ibrahim, K. M., Mantawy, E. M., Elanany, M. M., Abdelgawad, H. S., Khalifa, N. M., Hussien, R. H., & El-Demerdash, E. (2020). Protection from doxorubicin-induced nephrotoxicity by clindamycin: Novel antioxidant, anti-inflammatory and anti-apoptotic roles. Naunyn-Schmiedeberg’s Archives of Pharmacology, 393, 739–748.

    Article  CAS  PubMed  Google Scholar 

  73. Li, L. L., Wei, L., Zhang, N., Wei, W. Y., Hu, C., Deng, W., & Tang, Q. Z. (2020). Levosimendan protects against doxorubicin-induced cardiotoxicity by regulating the PTEN/Akt pathway. BioMed Research International, 2020, 11.

    Google Scholar 

  74. Radhiga, T., Rajamanickam, C., Sundaresan, A., Ezhumalai, M., & Pugalendi, K. V. (2012). Effect of ursolic acid treatment on apoptosis and DNA damage in isoproterenol-induced myocardial infarction. Biochimie, 94, 1135–1142.

    Article  CAS  PubMed  Google Scholar 

  75. Su, Z., Ye, J., Qin, Z., & Ding, X. (2015). Protective effects of madecassoside against doxorubicin induced nephrotoxicity in vivo and in vitro. Scientific Reports, 5(1), 18314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mobaraki, M., Faraji, A., Zare, M., Dolati, P., Ataei, M., & Manshadi, H. D. (2017). Molecular mechanisms of cardiotoxicity: A review on major side-effect of doxorubicin. Indian Journal of Pharmaceutical Sciences, 79(3), 335–344.

    Article  CAS  Google Scholar 

  77. Abdel Aziz, M. T., Wassef, M. A. A., Ahmed, H. H., Rashed, L., Mahfouz, S., Aly, M. I., & Abdelaziz, M. (2014). The role of bone marrow derived-mesenchymal stem cells in attenuation of kidney function in rats with diabetic nephropathy. Diabetology & Metabolic Syndrome, 6, 1–10.

    Article  Google Scholar 

  78. Thangarajan, S., Ramachandran, S., & Krishnamurthy, P. (2016). Chrysin exerts neuroprotective effects against 3-Nitropropionic acid induced behavioral despair—Mitochondrial dysfunction and striatal apoptosis via upregulating Bcl-2 gene and downregulating Bax—Bad genes in male wistar rats. Biomedicine & Pharmacotherapy, 84, 514–525.

    Article  CAS  Google Scholar 

  79. Yang, Z., Zhang, X. R., Zhao, Q., Wang, S. L., Xiong, L. L., Zhang, P., Wang, T. H., & Zhang, Y. H. (2018). Knockdown of TNF-α alleviates acute lung injury in rats with intestinal ischemia and reperfusion injury by upregulating IL-10 expression. International Journal of Molecular Medicine, 42(2), 926–934.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Yu, X., Lu, C., Liu, H., Rao, S., Cai, J., Liu, S., & Ding, X. (2013). Hypoxic preconditioning with cobalt of bone marrow mesenchymal stem cells improves cell migration and enhances therapy for treatment of ischemic acute kidney injury. PLoS ONE, 8(5), e62703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wu, X. H., Liu, C. P., Xu, K. F., Mao, X. D., Zhu, J., Jiang, J. J., & Liu, C. (2007). Reversal of hyperglycemia in diabetic rats by portal vein transplantation of islet-like cells generated from bone marrow mesenchymal stem cells. World Journal of Gastroenterology, 13(24), 3342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Rehab S. Abohashem conceived and designed the idea, performed the in vivo study and participated in the biochemical and data analysis, and wrote the manuscript. Hanaa H. Ahmed conceived and designed the idea, revised the manuscript, and provided the administrative support. Alaa H. Sayed participated in the biochemical and data analysis. Heba Effat performed the in vitro study and molecular genetic analysis, participated in data analysis and writing the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Rehab S. Abohashem.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Ethical Approval

The experimental protocol was conducted in compliance with the National Institute of Health guidelines and with the approval of Institutional Ethical Committee for Medical Research, National Research Centre, Egypt (Code No. 62311122022).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abohashem, R.S., Ahmed, H.H., Sayed, A.H. et al. Primary Protection of Diosmin Against Doxorubicin Cardiotoxicity via Inhibiting Oxido-Inflammatory Stress and Apoptosis in Rats. Cell Biochem Biophys (2024). https://doi.org/10.1007/s12013-024-01289-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12013-024-01289-7

Keywords

Navigation