Skip to main content

Advertisement

Log in

Molecular Mechanisms of Tumorgenesis and Metastasis of Long Non-coding RNA (lncRNA) NEAT1 in Human Solid Tumors; An Update

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The expression of the nuclear paraspeckle assembly transcript 1 (NEAT1), as a well-known long non-coding RNA (lncRNA), is often upregulated in varied types of cancers and associated with poor survival outcomes in patients suffering from tumors. NEAT1 promotes the tumors growth by influencing the various genes’ expression profile that regulate various aspects of tumor cell behavior, in particular tumor growth, metastasis and drug resistance. This suggests that NEAT1 are capable of serving as a new diagnostic biomarker and target for therapeutic intervention. Through interrelation with enhancer of zeste homolog 2 (EZH2), NEAT1 acts as a scaffold RNA molecule, and thus regulating the expression EZH2-associated genes. Additionally, by perform as miRNA sponge, it constrains suppressing the interactions between miRNAs-mediated degradation of target mRNAs. In light of this, NEAT1 inhibition by small interfering RNA (siRNA) hampers tumorgenesis. We summarize recent findings about the expression, biological functions, and regulatory process of NEAT1 in human tumors. It specifically emphasizes the clinical significance of NEAT1 as a novel diagnostic biomarker and a promising therapeutic mark for many types of cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

(NEAT1):

Nuclear paraspeckle assembly transcript 1

(CRC):

colorectal cancer

(NR4A1):

nuclear receptor 4 A1

(CPSF4):

cleavage and polyadenylation specific factor 4

(PCa):

prostate cancer

(HBXAP):

Hepatitis B x-antigen associated protein

(NSCLC):

non-small cell lung cancer

(CC):

Cervical cancer

References

  1. Zou, Y., & Chen, B. (2021). Long non-coding RNA HCP5 in cancer. Clinica Chimica Acta; International Journal of Clinical Chemistry, 512, 33–39.

    Article  CAS  PubMed  Google Scholar 

  2. Zakutansky P. M., & Feng Y. (2022). The long non-coding RNA GOMAFU in Schizophrenia: Function, disease risk, and beyond. Cells, 11, 176.

  3. Yan, H., & Bu, P. (2021). Non-coding RNA in cancer. Essays in Biochemistry, 65, 625–639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sharma, U., Barwal, T. S., Malhotra, A., Pant, N., Vivek, & Dey, D., et al. (2020). Long non-coding RNA TINCR as potential biomarker and therapeutic target for cancer. Life Sciences, 257, 118035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li, L., Wang, Y., Zhang, X., Huang, Q., Diao, Y., & Yin, H., et al. (2018). Long non-coding RNA HOXD-AS1 in cancer. Clinica Chimica Acta; International Journal of Clinical Chemistry, 487, 197–201.

    Article  CAS  PubMed  Google Scholar 

  6. Hsieh, P. F., Yu, C. C., Chu, P. M., & Hsieh, P. L. (2021). Long non-coding RNA MEG3 in cellular stemness. International Journal of Molecular Sciences, 22, 46–53.

  7. Ghafouri-Fard, S., Khoshbakht, T., Taheri, M., & Hajiesmaeili, M. (2021). Long intergenic non-protein coding RNA 460: Review of its role in carcinogenesis. Pathology, research and practice, 225, 153556.

    Article  CAS  PubMed  Google Scholar 

  8. Chi Y., Wang D., Wang J., Yu W., & Yang J. (2019). Long non-coding RNA in the pathogenesis of cancers. Cells, 8, 13.

  9. Shaath, H., Vishnubalaji, R., Elango, R., Kardousha, A., Islam, Z., & Qureshi, R., et al. (2022). Long non-coding RNA and RNA-binding protein interactions in cancer: Experimental and machine learning approaches. Seminars in Cancer Biology, 86, 325–345.

    Article  CAS  PubMed  Google Scholar 

  10. Quinn, J. J., & Chang, H. Y. (2016). Unique features of long non-coding RNA biogenesis and function. Nature Reviews Genetics, 17, 47–62.

    Article  CAS  PubMed  Google Scholar 

  11. Ferrè, F., Colantoni, A., & Helmer-Citterich, M. (2016). Revealing protein-lncRNA interaction. Briefings in Bioinformatics, 17, 106–116.

    Article  PubMed  Google Scholar 

  12. Cerase, A., & Tartaglia, G. G. (2020). Long non-coding RNA-polycomb intimate rendezvous. Open Biol, 10, 200126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, Y., Luo, M., Cui, X., O’Connell, D., & Yang, Y. (2022). Long noncoding RNA NEAT1 promotes ferroptosis by modulating the miR-362-3p/MIOX axis as a ceRNA. Cell Death and Differentiation, 29, 1850–1863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu X., Li Z., Zheng H., Chan M. T., & Wu W. K. (2017). NEAT1: A. novel cancer-related long non-coding RNA. Cell Proliferation, 50, 29–38.

  15. Yang, C., Li, Z., Li, Y., Xu, R., Wang, Y., & Tian, Y., et al. (2017). Long non-coding RNA NEAT1 overexpression is associated with poor prognosis in cancer patients: a systematic review and meta-analysis. Oncotarget, 8, 2672–2680.

    Article  PubMed  Google Scholar 

  16. Wu, H., & Liu, A. (2021). Long non-coding RNA NEAT1 regulates ferroptosis sensitivity in non-small-cell lung cancer. The Journal of International Medical Research, 49, 300060521996183.

    CAS  PubMed  Google Scholar 

  17. Wang, Z., Li, K., & Huang, W. (2020). Long non-coding RNA NEAT1-centric gene regulation. Cellular and Molecular Life Sciences 77, 3769–3779.

    Article  CAS  PubMed  Google Scholar 

  18. Knutsen, E., Harris, A. L., & Perander, M. (2022). Expression and functions of long non-coding RNA NEAT1 and isoforms in breast cancer. British Journal of Cancer, 126, 551–561.

    Article  CAS  PubMed  Google Scholar 

  19. Jia, Y., Yan, Q., Zheng, Y., Li, L., Zhang, B., & Chang, Z., et al. (2022). Long non-coding RNA NEAT1 mediated RPRD1B stability facilitates fatty acid metabolism and lymph node metastasis via c-Jun/c-Fos/SREBP1 axis in gastric cancer. Journal of Experimental & Clinical Cancer Research 41, 287.

    Article  CAS  Google Scholar 

  20. Chen, Y., Li, Z., Chen, X., & Zhang, S. (2021). Long non-coding RNAs: From disease code to drug role. Acta Pharmaceutica Sinica B, 11, 340–354.

    Article  CAS  PubMed  Google Scholar 

  21. Riva, P., Ratti, A., & Venturin, M. (2016). The long non-coding RNAs in neurodegenerative diseases: Novel mechanisms of pathogenesis. Current Alzheimer Research, 13, 1219–1231.

    Article  CAS  PubMed  Google Scholar 

  22. Godet, A. C., Roussel, E., David, F., Hantelys, F., Morfoisse, F., & Alves, J., et al. (2022). Long non-coding RNA Neat1 and paraspeckle components are translational regulators in hypoxia. Elife, 11, e69162.

  23. Fierro, C., Gatti, V., La Banca, V., De Domenico, S., Scalera, S., & Corleone, G., et al. (2023). The long non-coding RNA NEAT1 is a ΔNp63 target gene modulating epidermal differentiation. Nature Communications, 14, 3795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Salazar-Torres, F. J., Medina-Perez, M., Melo, Z., Mendoza-Cerpa, C., & Echavarria, R. (2021). Urinary expression of long non-coding RNA TUG1 in non-diabetic patients with glomerulonephritides. Biomedical Reports, 14, 17.

    Article  CAS  PubMed  Google Scholar 

  25. Ren, H., & Wang, Q. (2021). Non-coding RNA and diabetic kidney disease. DNA Cell Biology, 40, 553–567.

    Article  CAS  PubMed  Google Scholar 

  26. Nojima, T., & Proudfoot, N. J. (2022). Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics. Nature Reviews Molecular Cell Biology, 23, 389–406.

    Article  CAS  PubMed  Google Scholar 

  27. Haruehanroengra, P., Zheng, Y. Y., Zhou, Y., Huang, Y., & Sheng, J. (2020). RNA modifications and cancer. RNA Biology, 17, 1560–1575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mattick, J. S., Amaral, P. P., Carninci, P., Carpenter, S., Chang, H. Y., & Chen, L. L., et al. (2023). Long non-coding RNAs: definitions, functions, challenges and recommendations. Nature Reviews Molecular Cell Biology, 24, 430–447.

    Article  CAS  PubMed  Google Scholar 

  29. Yi, Q., Liu, Z., Zhang, K., Liu, X., Wang, L., & Geng, B., et al. (2021). The role of long non-coding RNA BCAR4 in human cancers. Human Cell, 34, 1301–1309.

    Article  CAS  PubMed  Google Scholar 

  30. Yao, Z. T., Yang, Y. M., Sun, M. M., He, Y., Liao, L., & Chen, K. S., et al. (2022). New insights into the interplay between long non-coding RNAs and RNA-binding proteins in cancer. Cancer Communications (London, England), 42, 117–140.

    Article  PubMed  Google Scholar 

  31. Xing, C., Sun, S. G., Yue, Z. Q., & Bai, F. (2021). Role of lncRNA LUCAT1 in cancer. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 134, 111158.

    Article  CAS  Google Scholar 

  32. Wang, Z., Ran, R., Zhang, S., Zhou, W., Lv, J., & Ma, C., et al. (2023). The role of long non-coding RNA HCG18 in cancer. Clinical & Translational Oncology : Official Publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico, 25, 611–619.

    Article  CAS  Google Scholar 

  33. Ji, D., Zhong, X., Jiang, X., Leng, K., Xu, Y., & Li, Z., et al. (2018). The role of long non-coding RNA AFAP1-AS1 in human malignant tumors. Pathology, Research and Practice, 214, 1524–1531.

    Article  CAS  PubMed  Google Scholar 

  34. Da, C. M., Gong, C. Y., Nan, W., Zhou, K. S., Wu, Z. L., & Zhang, H. H. (2020). The role of long non-coding RNA MIAT in cancers. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 129, 110359.

    Article  CAS  Google Scholar 

  35. Cui, M., You, L., Ren, X., Zhao, W., Liao, Q. & Zhao, Y. (2016). Long non-coding RNA PVT1 and cancer. Biochemical and Biophysical Research Communications, 471, 10–14.

    Article  CAS  PubMed  Google Scholar 

  36. Beermann, J., Piccoli, M. T., Viereck, J., & Thum, T. (2016). Non-coding RNAs in development and disease: Background, mechanisms, and therapeutic approaches. Physiological Reviews, 96, 1297–1325.

    Article  CAS  PubMed  Google Scholar 

  37. Bardhan, A., Banerjee, A., Basu, K., Pal, D. K., & Ghosh, A. (2022). PRNCR1: a long non-coding RNA with a pivotal oncogenic role in cancer. Human Genetics, 141, 15–29.

    Article  CAS  PubMed  Google Scholar 

  38. Zhu, M., Yang, L. & Wang, X. (2020). NEAT1 knockdown suppresses the cisplatin resistance in ovarian cancer by regulating miR-770-5p/PARP1 axis. Cancer Management and Research, 12, 7277–7289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, M., Weng, W., Zhang, Q., Wu, Y., Ni, S. & Tan, C. et al. (2018). The lncRNA NEAT1 activates Wnt/β-catenin signaling and promotes colorectal cancer progression via interacting with DDX5. Journal of Hematology & Oncology, 11, 113

    Article  Google Scholar 

  40. Zhang, H., Yu, S., Fei, K., Huang, Z., Deng, S., & Xu, H. (2022). NEAT1 promotes the malignant development of bladder cancer by regulating the miR-101/VEGF-C pathway in vitro and in vivo. BMC Urology, 22, 193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, Z., Gu, Y., Cheng, X., Jiang, H., Huang, Y., & Zhang, Y., et al. (2021). Upregulation lnc-NEAT1 contributes to colorectal cancer progression through sponging miR-486-5p and activating NR4A1/Wnt/β-catenin pathway. Cancer Biomarkers : Section A of Disease Markers, 30, 309–319.

    Article  CAS  PubMed  Google Scholar 

  42. Liu, X., Yao, W., Xiong, H., Li, Q., & Li, Y. (2020). LncRNA NEAT1 accelerates breast cancer progression through regulating miR-410-3p/ CCND1 axis. Cancer Biomarkers : Section A of Disease Markers, 29, 277–290.

    Article  CAS  PubMed  Google Scholar 

  43. Jiang, X., Zhou, Y., Sun, A. J. & Xue, J. L. (2018). NEAT1 contributes to breast cancer progression through modulating miR-448 and ZEB1. Journal of Cellular Physiology, 233, 8558–8566.

    Article  CAS  PubMed  Google Scholar 

  44. Xie, Y., Zheng, Z. W., He, H. T., & Chang, Z. B. (2022). LncRNA NEAT1 induces autophagy through the miR-128-3p/ADAM28 axis to suppress apoptosis of nonsmall-cell lung cancer. The Kaohsiung Journal of Medical Sciences, 38, 933–949.

    Article  CAS  PubMed  Google Scholar 

  45. Wen, S., Wei, Y., Zen, C., Xiong, W., Niu, Y., & Zhao, Y. (2020). Long non-coding RNA NEAT1 promotes bone metastasis of prostate cancer through N6-methyladenosine. Mol Cancer, 19, 171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tripathi S. K., Pal A., Ghosh S., Goel A., Aggarwal R., & Banerjee S., et al. (2022). LncRNA NEAT1 regulates HCV-induced Hepatocellular carcinoma by modulating the miR-9-BGH3 axis. The Journal of General Virology, 103.

  47. Toker, J., Iorgulescu, J. B., Ling, A. L., Villa, G. R., Gadet, J., & Parida, L., et al. (2023). Clinical importance of the lncRNA NEAT1 in cancer patients treated with immune checkpoint inhibitors. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 29, 2226–2238.

    Article  CAS  PubMed  Google Scholar 

  48. Smith N. E., Spencer-Merris P., Fox A. H., Petersen J., & Michael M. Z. (2022). The long and the short of it: NEAT1 and cancer cell metabolism. Cancers (Basel), 14, 21–30.

  49. Park, M. K., Zhang, L., Min, K. W., Cho, J. H., Yeh, C. C., & Moon, H., et al. (2021). NEAT1 is essential for metabolic changes that promote breast cancer growth and metastasis. Cell Metabolism, 33, 2380–97.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pang, Y., Wu, J., Li, X., Wang, C., Wang, M. & Liu, J. et al. (2019). NEAT1/miR‑124/STAT3 feedback loop promotes breast cancer progression. International Journal of Oncology, 55, 745–754.

    CAS  PubMed  Google Scholar 

  51. Chen, Q., Qin, Y., Lin, M., Li, Z., & Tang, W. (2022). lncRNA NEAT1 promotes colorectal cancer progression by increasing inflammation. Journal of Oncology, 2022, 4088271.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Azadeh, M., Salehzadeh, A., Ghaedi, K., & Talesh Sasani, S. (2022). NEAT1 can be a diagnostic biomarker in the breast cancer and gastric cancer patients by targeting XIST, hsa-miR-612, and MTRNR2L8: integrated RNA targetome interaction and experimental expression analysis. Genes and Environment : The Official Journal of the Japanese Environmental Mutagen Society, 44, 16.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, M., Guo, J., Liu, L., Huang, M., Li, Y. & Bennett, S. et al. (2022). The role of long non-coding RNA, nuclear enriched abundant transcript 1 (NEAT1) in cancer and other pathologies. Biochemical Genetics, 60, 843–867.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang J., Li Y., Liu Y., Xu G., Hei Y., & Lu X., et al. (2021). Long non‑coding RNA NEAT1 regulates glioma cell proliferation and apoptosis by competitively binding to microRNA‑324‑5p and upregulating KCTD20 expression. Oncology Reports, 46, 13–18.

  55. Yin, L. & Wang, Y. (2021). Long non-coding RNA NEAT1 facilitates the growth, migration, and invasion of ovarian cancer cells via the let-7 g/MEST/ATGL axis. Cancer Cell International, 21, 437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Thankachan, S., Bhardwaj, B. K., Venkatesh, T., & Suresh, P. S. (2021). Long Non-coding RNA NEAT1 as an Emerging Biomarker in Breast and Gynecologic Cancers: a Systematic Overview. Reproductive sciences (Thousand Oaks, Calif), 28, 2436–2447.

    Article  CAS  PubMed  Google Scholar 

  57. Luo, M., Zhang, L., Yang, H., Luo, K. & Qing, C. (2020). Long non‑coding RNA NEAT1 promotes ovarian cancer cell invasion and migration by interacting with miR‑1321 and regulating tight junction protein 3 expression. Molecular Medicine Reports, 22, 3429–3439.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu Y., Tang G., & Li J. (2022). Long non-coding RNA NEAT1 participates in ventilator-induced lung injury by regulating miR-20b expression. Molecular Medicine Reports 25, 1–13.

  59. Wang, Z., Fan, P., Zhao, Y., Zhang, S., Lu, J., & Xie, W., et al. (2017). NEAT1 modulates herpes simplex virus-1 replication by regulating viral gene transcription. Cellular and Molecular Life Sciences, 74, 1117–1131.

    Article  CAS  PubMed  Google Scholar 

  60. Lo, P.-K., Zhang, Y., Wolfson, B., Gernapudi, R., Yao, Y., & Duru, N., et al. (2016). Dysregulation of the BRCA1/long non-coding RNA NEAT1 signaling axis contributes to breast tumorigenesis. Oncotarget, 7, 65067.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhang, M., Zheng, Y., Sun, Y., Li, S., Chen, L., & Jin, X., et al. (2019). Knockdown of NEAT1 induces tolerogenic phenotype in dendritic cells by inhibiting activation of NLRP3 inflammasome. Theranostics, 9, 3425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mohankumar, K., Wright, G., Kumaravel, S., Shrestha, R., Zhang, L., & Abdelrahim, M., et al. (2023). Bis-indole-derived NR4A1 antagonists inhibit colon tumor and splenic growth and T-cell exhaustion. Cancer Immunology Immunotherapy, 72, 3985–3999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Azizidoost, S., Ghaedrahmati, F., Anbiyaee, O., Ahmad Ali, R., Cheraghzadeh, M., & Farzaneh, M. (2022). Emerging roles for lncRNA-NEAT1 in colorectal cancer. Cancer Cell International, 22, 1–10.

    Article  Google Scholar 

  64. Wang X., Jiang G., Ren W., Wang B., Yang C., & Li M. (2020). LncRNA NEAT1 regulates 5-Fu sensitivity, apoptosis and invasion in colorectal cancer through the MiR-150-5p/CPSF4 axis. OncoTargets and Therapy, 8, 6373–6383.

  65. Xia, G., Wang, H., Song, Z., Meng, Q., Huang, X., & Huang, X. (2017). Gambogic acid sensitizes gemcitabine efficacy in pancreatic cancer by reducing the expression of ribonucleotide reductase subunit-M2 (RRM2). Journal of Experimental & Clinical Cancer Research, 36, 1–14.

    Article  Google Scholar 

  66. Quan, D., Chen, K., Zhang, J., Guan, Y., Yang, D., & Wu, H., et al. (2020). Identification of lncRNA NEAT1/miR‐21/RRM2 axis as a novel biomarker in breast cancer. Journal of cellular physiology, 235, 3372–3381.

    Article  CAS  PubMed  Google Scholar 

  67. An, S., Xia, Y., Gao, Z., Sun, X., & Wang, J. (2021). LncRNA-NEAT1/miR-148a-3p axis regulates cell viability, apoptosis and autophagy through wnt/β-catenin signaling pathway in Breast Cancer. Tropical Journal of Pharmaceutical Research, 20, 899–910.

    Article  CAS  Google Scholar 

  68. Gaona-Luviano, P., Medina-Gaona, L. A. & & Magaña-Pérez, K. (2020). Epidemiology of ovarian cancer. The Chinese Clinical Oncology, 9, 47

    Article  PubMed  Google Scholar 

  69. Yin, L., & Wang, Y. (2021). Long non-coding RNA NEAT1 facilitates the growth, migration, and invasion of ovarian cancer cells via the let-7 g/MEST/ATGL axis. Cancer Cell International, 21, 1–15.

    Article  Google Scholar 

  70. Guo Y., Dong X., Mao S., Yang F., Wang R., & Ma W., et al. (2022). Causes of death after prostate cancer diagnosis: a population-based study. Oxidative Medicine and Cellular Longevity, 2022.

  71. Zhao W., Zhu X., Jin Q., Lin B., & Ji R. (2022). The lncRNA NEAT1/miRNA-766-5p/E2F3 regulatory axis promotes prostate cancer progression. Journal of Oncology, 2022, 134–138.

  72. Xu W., Wu Y., & Zhang G. (2024). NEAT1 promotes the progression of prostate cancer by targeting the miR-582-5p/EZH2 regulatory axis. Cytotechnology, 6, 1–16.

  73. González, C. A., & Agudo, A. (2012). Carcinogenesis, prevention and early detection of gastric cancer: where we are and where we should go. International Journal of Cancer, 130, 745–753.

    Article  PubMed  Google Scholar 

  74. Sheu, J. J.-C., Guan, B., Choi, J.-H., Lin, A., Lee, C.-H., & Hsiao, Y.-T., et al. (2010). Rsf-1, a chromatin remodeling protein, induces DNA damage and promotes genomic instability. Journal of Biological Chemistry, 285, 38260–38269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yang L., Wang M., & He P. (2020). LncRNA NEAT1 promotes the progression of gastric cancer through modifying the miR-1224-5p/RSF1 signaling axis. Cancer Management and Research, 11845–11855.

  76. Xu, Y., Li, Y., Qiu, Y., Sun, F., Zhu, G., & Sun, J., et al. (2021). LncRNA NEAT1 promotes gastric cancer progression through miR-17-5p/TGFβR2 axis up-regulated angiogenesis. Frontiers in Cell and Developmental Biology, 9, 705697.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Virno, F., Di Giorgio, A., Di Lauro, G., Bellezza, F., & Carrozzini, A. (1986). Small cell lung cancer (SCLC) and non small cell lung cancer (NSCLC): Comparative evaluation of survival after surgical treatment by computer. Lung Cancer, 2, 105–106.

    Google Scholar 

  78. van de Vis, R. A., Moustakas, A., & van der Heide, L. P. (2021). NUAK1 and NUAK2 fine-tune TGF-β signaling. Cancers, 13, 3377.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zhao M.-M., Ge L.-Y., Yang L.-F., Zheng H.-X., Chen G., & Wu L.-Z., et al. (2020). LncRNA NEAT1/miR-204/NUAK1 axis is a potential therapeutic target for non-small cell lung cancer. Cancer Management and Research, 11, 13357–13368.

  80. Wen, J., Zheng, W., Zeng, L., Wang, B., Chen, D., & Chen, Y., et al. (2023). LTF Induces Radioresistance by Promoting Autophagy and Forms an AMPK/SP2/NEAT1/miR-214-5p Feedback Loop in Lung Squamous Cell Carcinoma. International Journal of Biological Sciences, 19, 1509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rashed, W. M., Kandeil, M. A. M., Mahmoud, M. O., & Ezzat, S. (2020). Hepatocellular Carcinoma (HCC) in Egypt: A comprehensive overview. Journal of the Egyptian National Cancer Institute, 32, 1–11.

    Article  Google Scholar 

  82. Choudhry, H., Albukhari, A., Morotti, M., Haider, S., Moralli, D., & Smythies, J., et al. (2015). Tumor hypoxia induces nuclear paraspeckle formation through HIF-2α dependent transcriptional activation of NEAT1 leading to cancer cell survival. Oncogene, 34, 4482–4490.

    Article  CAS  PubMed  Google Scholar 

  83. Zhang, X., Kang, Z., Xie, X., Qiao, W., Zhang, L., & Gong, Z., et al. (2020). Silencing of HIF-1α inhibited the expression of lncRNA NEAT1 to suppress development of hepatocellular carcinoma under hypoxia. American Journal of Translational Research, 12, 3871–3883.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Tu, J., Zhao, Z., Xu, M., Lu, X., Chang, L., & Ji, J. (2018). NEAT1 upregulates TGF‐β1 to induce hepatocellular carcinoma progression by sponging hsa‐mir‐139‐5p. Journal of Cellular Physiology, 233, 8578–8587.

    Article  CAS  PubMed  Google Scholar 

  85. Vistad, I., Fosså, S. D., & Dahl, A. A. (2006). A critical review of patient-rated quality of life studies of long-term survivors of cervical cancer. Gynecologic Oncology, 102, 563–572.

    Article  PubMed  Google Scholar 

  86. Shen X., Zhao W., Zhang Y., & Liang B. (2020). Long non-coding RNA-NEAT1 promotes cell migration and invasion via regulating miR-124/NF-κB pathway in cervical cancer. OncoTargets and Therapy, 4, 3265–3276.

  87. Geng, F., Jia, W.-C., Li, T., Li, N., & Wei, W. (2022). Knockdown of lncRNA NEAT1 suppresses proliferation and migration, and induces apoptosis of cervical cancer cells by regulating the miR‑377/FGFR1 axis. Molecular Medicine Reports, 25, 1–11.

    CAS  Google Scholar 

  88. Kopf, A. W., Bart, R. S., & Rodríguez-Sains, R. S. (1977). Malignant melanoma: a review. Dermatologic Surgery, 3, 41–117.

    Article  CAS  Google Scholar 

  89. Ma, X., Xu, M., Zhang, X., Wang, X., Su, K., & Xu, Z., et al. (2023). Gambogenic acid inhibits proliferation and ferroptosis by targeting the miR‐1291/FOXA2 and AMPKα/SLC7A11/GPX4 axis in colorectal cancer. Cell Biology International, 47, 1813–1824.

    Article  CAS  PubMed  Google Scholar 

  90. Wang, M., Cheng, H., Wu, H., Liu, C., Li, S., & Li, B., et al. (2022). Gambogenic acid antagonizes the expression and effects of long non-coding RNA NEAT1 and triggers autophagy and ferroptosis in melanoma. Biomedicine & Pharmacotherapy., 154, 113636.

    Article  CAS  Google Scholar 

  91. Chen, Y., Chang, Y., Zhou, J., Lv, L., & Ying, H. (2023). Inhibiting lncRNA NEAT1 facilitates the sensitization of melanoma cells to cisplatin through modulating the miR-519c-3p-MeCP2 axis. Pathology-Research and Practice, 243, 154364.

    Article  CAS  PubMed  Google Scholar 

  92. Shi, W.-H., Wu, Q.-Q., Li, S.-Q., Yang, T.-X., Liu, Z.-H., & Tong, Y.-S., et al. (2015). Upregulation of the long noncoding RNA PCAT-1 correlates with advanced clinical stage and poor prognosis in esophageal squamous carcinoma. Tumor Biology, 36, 2501–2507.

    Article  CAS  PubMed  Google Scholar 

  93. Wang, P., Liu, Y.-h, Yao, Y.-l, Li, Z., Li, Z.-q, & Ma, J., et al. (2015). Long non-coding RNA CASC2 suppresses malignancy in human gliomas by miR-21. Cellular signalling, 27, 275–282.

    Article  CAS  PubMed  Google Scholar 

  94. Wang, Y., Wang, Y., Li, J., Zhang, Y., Yin, H., & Han, B. (2015). CRNDE, a long-noncoding RNA, promotes glioma cell growth and invasion through mTOR signaling. Cancer Letters, 367, 122–128.

    Article  CAS  PubMed  Google Scholar 

  95. Di, W., Li, Q., Shen, W., Guo, H., & Zhao, S. (2017). The long non-coding RNA HOTAIR promotes thyroid cancer cell growth, invasion and migration through the miR-1-CCND2 axis. American Journal of Cancer Research, 7, 1298.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Zheng, R., Du, M., Wang, X., Xu, W., Liang, J., & Wang, W., et al. (2018). Exosome–transmitted long non-coding RNA PTENP1 suppresses bladder cancer progression. Molecular Cancer, 17, 1–13.

    Article  CAS  Google Scholar 

  97. Xue, M., Pang, H., Li, X., Li, H., Pan, J., & Chen, W. (2016). Long non‐coding RNA urothelial cancer‐associated 1 promotes bladder cancer cell migration and invasion by way of the hsa‐miR‐145–ZEB 1/2–FSCN 1 pathway. Cancer Science, 107, 18–27.

    Article  PubMed  Google Scholar 

  98. Liu, D., Li, Y., Luo, G., Xiao, X., Tao, D., & Wu, X., et al. (2017). LncRNA SPRY4-IT1 sponges miR-101-3p to promote proliferation and metastasis of bladder cancer cells through up-regulating EZH2. Cancer Letters, 388, 281–291.

    Article  CAS  PubMed  Google Scholar 

  99. Sun, X., Du, P., Yuan, W., Du, Z., Yu, M., & Yu, X., et al. (2015). Long non-coding RNA HOTAIR regulates cyclin J via inhibition of microRNA-205 expression in bladder cancer. Cell Death & Disease, 6, e1907-e.

    Article  Google Scholar 

  100. Okugawa, Y., Toiyama, Y., Hur, K., Toden, S., Saigusa, S., & Tanaka, K., et al. (2014). Metastasis-associated long non-coding RNA drives gastric cancer development and promotes peritoneal metastasis. Carcinogenesis, 35, 2731–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Li, L., Geng, Y., Feng, R., Zhu, Q., Miao, B., & Cao, J., et al. (2017). The human RNA surveillance factor UPF1 modulates gastric cancer progression by targeting long non-coding RNA MALAT1. Cellular Physiology and Biochemistry, 42, 2194–2206.

    Article  CAS  PubMed  Google Scholar 

  102. Li, C., Miao, R., Liu, S., Wan, Y., Zhang, S., & Deng, Y., et al. (2017). Down-regulation of miR-146b-5p by long noncoding RNA MALAT1 in hepatocellular carcinoma promotes cancer growth and metastasis. Oncotarget, 8, 28683.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Chou, J., Wang, B., Zheng, T., Li, X., Zheng, L., & Hu, J., et al. (2016). MALAT1 induced migration and invasion of human breast cancer cells by competitively binding miR-1 with cdc42. Biochemical and Biophysical Research Communications, 472, 262–269.

    Article  CAS  PubMed  Google Scholar 

  104. Younger, S. T., & Rinn, J. L. (2014). ‘Lnc’-ing enhancers to MYC regulation. Cell Research, 24, 643–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ling, H., Spizzo, R., Atlasi, Y., Nicoloso, M., Shimizu, M., & Redis, R. S., et al. (2013). CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Research, 23, 1446–1461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Xu, C., Yang, M., Tian, J., Wang, X., & Li, Z. (2011). MALAT-1: a long non-coding RNA and its important 3’end functional motif in colorectal cancer metastasis. International Journal of Oncology, 39, 169–175.

    PubMed  Google Scholar 

  107. Zhang, X., Zhou, Y., Mehta, K. R., Danila, D. C., Scolavino, S., & Johnson, S. R., et al. (2003). A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. The Journal of Clinical Endocrinology & Metabolism, 88, 5119–5126.

    Article  CAS  Google Scholar 

  108. Kogo, R., Shimamura, T., Mimori, K., Kawahara, K., Imoto, S., & Sudo, T., et al. (2011). Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Research, 71, 6320–6326.

    Article  CAS  PubMed  Google Scholar 

  109. Hessels, D., Gunnewiek, J. M. K., van Oort, I., Karthaus, H. F., van Leenders, G. J., & van Balken, B., et al. (2003). DD3PCA3-based molecular urine analysis for the diagnosis of prostate cancer. European Urology, 44, 8–16.

    Article  CAS  PubMed  Google Scholar 

  110. Ren, S., Wang, F., Shen, J., Sun, Y., Xu, W., & Lu, J., et al. (2013). Long non-coding RNA metastasis associated in lung adenocarcinoma transcript 1 derived miniRNA as a novel plasma-based biomarker for diagnosing prostate cancer. European Journal of Cancer, 49, 2949–2959.

    Article  CAS  PubMed  Google Scholar 

  111. Luo, J., Wang, K., Yeh, S., Sun, Y., Liang, L., & Xiao, Y., et al. (2019). LncRNA-p21 alters the antiandrogen enzalutamide-induced prostate cancer neuroendocrine differentiation via modulating the EZH2/STAT3 signaling. Nature Communications, 10, 2571.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Kim, K., Jutooru, I., Chadalapaka, G., Johnson, G., Frank, J., & Burghardt, R., et al. (2013). HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene, 32, 1616–1625.

    Article  CAS  PubMed  Google Scholar 

  113. Zhang, J., Qiu, W.-Q., Zhu, H., Liu, H., Sun, J.-H., & Chen, Y., et al. (2020). HOTAIR contributes to the carcinogenesis of gastric cancer via modulating cellular and exosomal miRNAs level. Cell Death & Disease, 11, 780.

    Article  CAS  Google Scholar 

  114. Ghafouri-Fard, S., Esmaeili, M., & Taheri, M. (2020). H19 lncRNA: roles in tumorigenesis. Biomedicine & Pharmacotherapy, 123, 109774.

    Article  CAS  Google Scholar 

  115. Zhang, X., Xu, Y., He, C., Guo, X., Zhang, J., & He, C., et al. (2015). Elevated expression of CCAT2 is associated with poor prognosis in esophageal squamous cell carcinoma. Journal of Surgical Oncology, 111, 834–839.

    Article  CAS  PubMed  Google Scholar 

  116. Zeng, J., Sun, L., Huang, J., Yang, X., & Hu, W. (2022). Enhancer of zeste homolog 2 is a negative prognostic biomarker and correlated with immune infiltrates in meningioma. Frontiers in Neuroscience, 16, 1076530.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Li, K., & Wang, Z. (2021). Histone crotonylation-centric gene regulation. Epigenetics & Chromatin, 14, 10.

    Article  CAS  Google Scholar 

  118. Lazar J. E., Stehling-Sun S., Nandakumar V., Wang H., Chee D. R., & Howard N. P., et al. (2020). Global regulatory DNA potentiation by SMARCA4 propagates to selective gene expression programs via domain-level remodeling. Cell Reports, 31, 107676.

  119. Emperle, M., Bangalore, D. M., Adam, S., Kunert, S., Heil, H. S., & Heinze, K. G., et al. (2021). Structural and biochemical insight into the mechanism of dual CpG site binding and methylation by the DNMT3A DNA methyltransferase. Nucleic Acids Research, 49, 8294–8308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Li N., & Liu X. (2020). Phosphoglycerate mutase 1: its glycolytic and non-glycolytic roles in tumor malignant behaviors and potential therapeutic significance. OncoTargets and Therapy, 12, 1787–1795.

  121. Wen, S., Wei, Y., Zen, C., Xiong, W., Niu, Y., & Zhao, Y. (2020). Long non-coding RNA NEAT1 promotes bone metastasis of prostate cancer through N6-methyladenosine. Molecular cancer, 19, 1–18.

    Article  Google Scholar 

  122. Wang, K., Yu, Y., Wang, W., Jiang, Y., Li, Y., & Jiang, X., et al. (2023). Targeting the E3 ligase NEDD4 as a novel therapeutic strategy for IGF1 signal pathway-driven gastric cancer. Oncogene, 42, 1072–1087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Guangwei, Z., Zhibin, C., Qin, W., Chunlin, L., Penghang, L., & Ruofan, H., et al. (2022). TRAF6 regulates the signaling pathway influencing colorectal cancer function through ubiquitination mechanisms. Cancer Science, 113, 1393–1405.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Zhang, L., Chen, Z., Wang, Y., Tweardy, D. J., & Mitch, W. E. (2020). Stat3 activation induces insulin resistance via a muscle-specific E3 ubiquitin ligase Fbxo40. American Journal of Physiology-Endocrinology and Metabolism, 318, E625–E635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. DeMoya R. SIN3A associated proteins (SAPs) and zebrafish cardiogenesis: University of Pittsburgh; 2023.

  126. Jing, X., Liu, B., Deng, S., Du, J., & She, Q. (2021). Agrin yes-associated protein promotes the proliferation of epicardial cells. Journal of Cardiovascular Pharmacology, 77, 94–99.

    Article  CAS  PubMed  Google Scholar 

  127. Yu, K., Huang, Z.-Y., Xu, X.-L., Li, J., Fu, X.-W., & Deng, S.-L. (2022). Estrogen receptor function: impact on the human endometrium. Frontiers in Endocrinology, 13, 827724.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Tabassum S., & Ghosh M. K. (2022). DEAD-box RNA helicases with special reference to p68: Unwinding their biology, versatility, and therapeutic opportunity in cancer. Genes & Diseases, 10, 1220–1241.

  129. Jen, H.-W., Gu, D.-L., Lang, Y.-D., & Jou, Y.-S. (2020). PSPC1 Potentiates IGF1R expression to augment cell adhesion and motility. Cells, 9, 1490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Niu, X., Wu, T., Li, G., Gu, X., Tian, Y., & Cui, H. (2022). Insights into the critical role of the PXR in preventing carcinogenesis and chemotherapeutic drug resistance. International Journal of Biological Sciences, 18, 742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yang X.-C., & Dominski Z. (2023). Polypyrimidine Tract-Binding Protein 1 and hnRNP A1 recognize unique features of the Sm site in U7 snRNA. bioRxiv. 2023.08.

Download references

Acknowledgements

The authors are thankful to the Deanship of Scientific Research, King Khalid University, Abha, Saudi Arabia, for financially supporting this work through the Large Research Group Project under Grant no. R.G.P.2/369/44.

Funding

Deanship of Scientific Research, King Khalid University, Abha, Saudi Arabia (Grant no. R.G.P.1/323/44).

Author information

Authors and Affiliations

Authors

Contributions

M.Y.A, A.H, P.B, H.K, M.D, F.M.A.A, A.H.K, H.F.H, B.A.M and R.O.S wrote the main manuscript text and A.H. prepared figures. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Raed Obaid Saleh or Farag M. A. Altalbawy.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alshahrani, M.Y., Saleh, R.O., Hjazi, A. et al. Molecular Mechanisms of Tumorgenesis and Metastasis of Long Non-coding RNA (lncRNA) NEAT1 in Human Solid Tumors; An Update. Cell Biochem Biophys (2024). https://doi.org/10.1007/s12013-024-01287-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12013-024-01287-9

Keywords

Navigation