Skip to main content
Log in

Structural insight into the binding mode of cefotaxime and meropenem to TEM-1, SHV-1, KPC-2, and Amp-C type beta-lactamases

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Antimicrobial resistance is an emerging threat to public health around the world. The study employs computational and biophysical methods to investigate the properties of cefotaxime and meropenem’s binding to various beta-lactamases like TEM-1, SHV-1, KPC-2, and Amp-C. The enzyme kinetics of purified proteins revealed an increase in Michaelis constant (Km) value in the presence of meropenem and cefotaxime, indicating a decrease in enzyme affinity for nitrocefin. Proteins interact with meropenem/cefotaxime, causing quenching through complex formation. All proteins have one binding site, and binding constant (Kb) values are 104, indicating strong interaction. The study found that meropenem and cefotaxime had high fitness scores for Amp-C, KPC-2,TEM-1 and SHV-1, with binding energy ranging from −7.4 to −7.8, and hydrogen bonds between them. Molecular Dynamic simulation of protein–ligand complexes revealed cefotaxime-binding proteins have slightly lower Root Mean Square Deviation(RMSD) than meropenem-binding proteins, indicating stable association antibiotics with these proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Pulingam, T., Parumasivam, T., Gazzali, A. M., Sulaiman, A. M., Chee, J. Y., Lakshmanan, M., & Sudesh, K. (2022). Antimicrobial resistance: prevalence, economic burden, mechanisms of resistance and strategies to overcome. European Journal of Pharmaceutical Sciences, 170, 106103. https://doi.org/10.1016/j.ejps.2021.106103.

    Article  CAS  PubMed  Google Scholar 

  2. Papp-Wallace, K. M. (2019). The latest advances in β-lactam/β-lactamase inhibitor combinations for the treatment of Gram-negative bacterial infections. Expert Opinion on Pharmacotherapy, 20(17), 2169–2184. https://doi.org/10.1080/14656566.2019.1660772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pitout, J. D. D., Sanders, C. C., & Sanders, W. E. (1997). Antimicrobial resistance with focus on β-lactam resistance in gram-negative bacilli. The American Journal of Medicine, 103(1), 51–59. https://doi.org/10.1016/S0002-9343(97)00044-2.

    Article  CAS  PubMed  Google Scholar 

  4. Drawz, S. M., & Bonomo, R. A. (2010). Three decades of β-lactamase inhibitors. Clinical Microbiology Reviews, 23(1), 160–201. https://doi.org/10.1128/CMR.00037-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bush, K., & Jacoby, G. A. (2010). Updated functional classification of β-lactamases. Antimicrobial Agents and Chemotherapy, 54(3), 969–976. https://doi.org/10.1128/AAC.01009-09.

    Article  CAS  PubMed  Google Scholar 

  6. Spratt, B. G., & Cromie, K. D. (1988). Penicillin-binding proteins of gram-negative bacteria. Clinical Infectious Diseases, 10(4), 699–711. https://doi.org/10.1093/clinids/10.4.699.

    Article  CAS  Google Scholar 

  7. Oka, T., Hashizume, K., & Fujita, H. (1980). Inhibition of peptidoglycan transpeptidase by beta-lactam antibiotics: structure-activity relationships. The Journal of Antibiotics, 33(11), 1357–1362. https://doi.org/10.7164/antibiotics.33.1357.

    Article  CAS  PubMed  Google Scholar 

  8. Zeng, X., & Lin, J. (2013). Beta-lactamase induction and cell wall metabolism in Gram-negative bacteria. Frontiers in Microbiology, 4, 128.

  9. Philippon, A.(1985). Susceptibility of Pseudomonas aeruginosa to beta-lactam antibiotics. Chemioterapia: International Journal of the Mediterranean Society of Chemotherapy, 4(6), 424–8.

    CAS  PubMed  Google Scholar 

  10. Farhat, N., Gupta, D., Ali, A., Kumar, Y., Akhtar, F., Kulanthaivel, S., … Khan, A. U. (2022). Broad-spectrum inhibitors against class A, B, and C type β-lactamases to block the hydrolysis against antibiotics: kinetics and structural characterization. Microbiology Spectrum, 10(5), e0045022.

  11. Kuzin, A. P., Nukaga, M., Nukaga, Y., Hujer, A. M., Bonomo, R. A., & Knox, J. R. (1999). Structure of the SHV-1 β-Lactamase. Biochemistry, 38(18), 5720–5727. https://doi.org/10.1021/bi990136d.

    Article  CAS  PubMed  Google Scholar 

  12. Fonzé, E., Charlier, P., To’th, Y., Vermeire, M., Raquet, X., Dubus, A., & Frère, J.-M. (1995). TEM1 β-lactamase structure solved by molecular replacement and refined structure of the S235A mutant. Acta Crystallographica Section D Biological Crystallography, 51(5), 682–694. https://doi.org/10.1107/S0907444994014496.

    Article  PubMed  Google Scholar 

  13. Petrella, S., Ziental-Gelus, N., Mayer, C., Renard, M., Jarlier, V., & Sougakoff, W. (2008). Genetic and structural insights into the dissemination potential of the extremely broad-spectrum class A β-Lactamase KPC-2 identified in an Escherichia coli strain and an enterobacter cloacae strain isolated from the same patient in france. Antimicrobial Agents and Chemotherapy, 52(10), 3725–3736. https://doi.org/10.1128/AAC.00163-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McKinney, D. C., Zhou, F., Eyermann, C. J., Ferguson, A. D., Prince, D. B., Breen, J., & Verheijen, J. C. (2015). 4,5-disubstituted 6-Aryloxy-1,3-dihydrobenzo[c][1,2]oxaboroles are broad-spectrum serine β-lactamase inhibitors. ACS Infectious Diseases, 1(7), 310–316. https://doi.org/10.1021/acsinfecdis.5b00031.

    Article  CAS  PubMed  Google Scholar 

  15. Farhat, N., & Khan, A. U. (2021). Repurposing drug molecule against SARS-Cov-2 (COVID-19) through molecular docking and dynamics: a quick approach to pick FDA-approved drugs. Journal of Molecular Modeling, 27(11), 312. https://doi.org/10.1007/s00894-021-04923-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., & Bolton, E. E. (2019). Nucleic Acids Research, 47(D1), D1102–D1109.

  17. Jones, G., Willett, P., & Glen, R. C. (1995). Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. Journal of Molecular Biology, 245(1), 43–53. https://doi.org/10.1016/S0022-2836(95)80037-9.

    Article  CAS  PubMed  Google Scholar 

  18. Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31, 455–461.

  19. Dalal, V., & Kumari, R. (2022). Screening and Identification of Natural Product‐Like Compounds as Potential Antibacterial Agents Targeting FemC of Staphylococcus aureus: An in‐Silico Approach. ChemistrySelect, 7(42). https://doi.org/10.1002/slct.202201728.

  20. Dalal, V., Dhankhar, P., Singh, V., Singh, V., Rakhaminov, G., Golemi-Kotra, D., & Kumar, P. (2021). Structure-based identification of potential drugs against FmtA of Staphylococcus aureus: virtual screening, molecular dynamics, MM-GBSA, and QM/MM. The Protein Journal, 40(2), 148–165. https://doi.org/10.1007/s10930-020-09953-6.

    Article  CAS  PubMed  Google Scholar 

  21. Kumari, R., & Dalal, V. (2022). Identification of potential inhibitors for LLM of Staphylococcus aureus: structure-based pharmacophore modeling, molecular dynamics, and binding free energy studies. Journal of Biomolecular Structure and Dynamics, 40(20), 9833–9847. https://doi.org/10.1080/07391102.2021.1936179.

    Article  CAS  PubMed  Google Scholar 

  22. Singh, V., Dhankhar, P., Dalal, V., Tomar, S., Golemi-Kotra, D., & Kumar, P. (2022). Drug-repurposing approach to combat Staphylococcus aureus: biomolecular and binding interaction study. ACS Omega, 7(43), 38448–38458. https://doi.org/10.1021/acsomega.2c03671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kumari, R., Rathi, R., Pathak, S. R., & Dalal, V. (2022). Structural-based virtual screening and identification of novel potent antimicrobial compounds against YsxC of Staphylococcus aureus. Journal of Molecular Structure, 1255, 132476 https://doi.org/10.1016/j.molstruc.2022.132476.

    Article  CAS  Google Scholar 

  24. Qamar, M., Sultanat, S., Khan, A. U., Ali, A., & Farhat, N. (2022). One pot facile synthesis of flavanoidal oxadiazinanones: In vitro antibacterial activity, docking and MD simulation using DNA gyrase. Journal of Molecular Structure, 1251, 131944. https://doi.org/10.1016/j.molstruc.2021.131944.

    Article  CAS  Google Scholar 

  25. Beg, A. Z., Farhat, N., & Khan, A. U. (2021). Designing multi-epitope vaccine candidates against functional amyloids in Pseudomonas aeruginosa through immunoinformatic and structural bioinformatics approach. Infection, Genetics and Evolution, 93, 104982. https://doi.org/10.1016/j.meegid.2021.104982.

    Article  CAS  PubMed  Google Scholar 

  26. Sharma, M., Farhat, N., Khan, A. U., Khan, F. H., & Mahmood, R. (2023). Studies on the interaction of 2,4-dibromophenol with human hemoglobin using multi-spectroscopic, molecular docking and molecular dynamics techniques. Journal of Biomolecular Structure and Dynamics, 1–11. https://doi.org/10.1080/07391102.2023.2264975.

  27. Lahiri, S. D., Bradford, P. A., Nichols, W. W., & Alm, R. A. (2016). Structural and sequence analysis of class A β-lactamases with respect to avibactam inhibition: impact of Ω-loop variations. Journal of Antimicrobial Chemotherapy, 71(10), 2848–2855. https://doi.org/10.1093/jac/dkw248.

    Article  CAS  PubMed  Google Scholar 

  28. Sun, J., Chikunova, A., Boyle, A. L., Voskamp, P., Timmer, M., & Ubbink, M. (2023). Enhanced activity against a third-generation cephalosporin by destabilization of the active site of a class A beta-lactamase. International Journal of Biological Macromolecules, 250, 126160. https://doi.org/10.1016/j.ijbiomac.2023.126160.

    Article  CAS  PubMed  Google Scholar 

  29. Benitez, M. J., Company, M., & Jiménez, J. S. (1991). Kinetics of the reaction between 5,5′-dithiobis[2-nitrobenzoic acid] and the sulphydryl group in Zn2+-dependent β-lactamase II. International Journal of Biological Macromolecules, 13(6), 345–348. https://doi.org/10.1016/0141-8130(91)90016-N.

    Article  CAS  PubMed  Google Scholar 

  30. Company, M., Benitez, M. J., & Jiménez, J. S. (1991). Degradation of β-lactam antibiotics in the presence of Zn2+ and 2-mino-2-hydroxymethylpropane-1,3-diol (Tris). A hypothetical non-enzymic model of β-lactamases. International Journal of Biological Macromolecules, 13(4), 225–230. https://doi.org/10.1016/0141-8130(91)90077-8.

    Article  CAS  PubMed  Google Scholar 

  31. Bhattacharya, S., Junghare, V., Pandey, N. K., Ghosh, D., Patra, H., & Hazra, S. (2020). An insight into the complete biophysical and biochemical characterization of novel class A beta-lactamase (Bla1) from Bacillus anthracis. International Journal of Biological Macromolecules, 145, 510–526. https://doi.org/10.1016/j.ijbiomac.2019.12.136.

    Article  CAS  PubMed  Google Scholar 

  32. Eftink, M. R., & Ghiron, C. A. (1981). Fluorescence quenching studies with proteins. Analytical Biochemistry, 114(2), 199–227. https://doi.org/10.1016/0003-2697(81)90474-7.

    Article  CAS  PubMed  Google Scholar 

  33. Farhat, N., Ali, A., Waheed, M., Gupta, D., & Khan, A. U. (2022). Chemically synthesised flavone and coumarin based isoxazole derivatives as broad spectrum inhibitors of serine β-lactamases and metallo-β-lactamases: a computational, biophysical and biochemical study. Journal of Biomolecular Structure and Dynamics, 0(0), 1–11. https://doi.org/10.1080/07391102.2022.2099977.

    Article  CAS  Google Scholar 

  34. Bhattacharya, S., Padhi, A. K., Junghare, V., Das, N., Ghosh, D., Roy, P., & Hazra, S. (2021). Understanding the molecular interactions of inhibitors against Bla1 beta-lactamase towards unraveling the mechanism of antimicrobial resistance. International Journal of Biological Macromolecules, 177, 337–350. https://doi.org/10.1016/j.ijbiomac.2021.02.069.

    Article  CAS  PubMed  Google Scholar 

  35. Farhat, N., & Khan, A. U. (2024). Inhibitors against New Delhi metallo-betalactamase-1 (NDM-1) and its variants endemic in Indian settings along with the laboratory functional gain mutant of NDM-1. European Journal of Clinical Microbiology & Infectious Diseases. https://doi.org/10.1007/s10096-024-04761-7.

  36. Farhat, N., & Khan, A. U. (2023). Repurposing FDA approved drug molecules against A B C classes of β-lactamases: a computational biology and molecular dynamics simulations study. Journal of Biomolecular Structure and Dynamics, 1–15. https://doi.org/10.1080/07391102.2023.2276890.

  37. Farhat, N., Mujahid, S., & Khan, A. U. (2024). Mechanistic approach of effective combination of antibiotics against clinical bacterial strains having New Delhi Metallo-beta-lactamase variants and functional gain laboratory mutant. Current Microbiology, 81(1), 41 https://doi.org/10.1007/s00284-023-03553-0.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the facility and support provided by the Department of Biotechnology, Ministry of science and technology, Government of India.

Funding

Funding:The authors acknowledge funding from the DBT, Government of India, grant no. BT/PR40148/BTIS/137/20/2021, Tata Innovation Fellowship, BT/HRD/TIF/09/04/2021-22 and NNP DBT GRANT: BT/PR40180/BTIS/137/59/2023. NF is also recipient of senior research fellow from mentioned project.

Author information

Authors and Affiliations

Authors

Contributions

NF, performed all experiments and wrote manuscript, TK, performed some of the experiments, SN performed bioinformatic studies AUK, conceived problem and guided the study provided resources and checked first draft of manuscript.

Corresponding author

Correspondence to Asad U. Khan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhat, N., Khanam, T., Noor, S. et al. Structural insight into the binding mode of cefotaxime and meropenem to TEM-1, SHV-1, KPC-2, and Amp-C type beta-lactamases. Cell Biochem Biophys (2024). https://doi.org/10.1007/s12013-024-01284-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12013-024-01284-y

Navigation