Skip to main content
Log in

Extracellular Vesicles: A New Approach to Study the Brain’s Neural System and Its Diseases

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

In normal and pathophysiological conditions our cells secrete vesicular bodies known as extracellular particles. Extracellular vesicles are lipid-bound extracellular particles. A majority of these extracellular vesicles are linked to cell-to-cell communication. Brain consists of tightly packed neural cells. Neural cell releases extracellular vesicles in cerebrospinal fluid. Extracellular vesicle mediated crosstalk maintains neural homeostasis in the central nervous system via transferring cargos between neural cells. In neurodegenerative diseases, small extracellular vesicle transfer misfolded proteins to healthy cells in the neural microenvironment. They can also cross blood-brain barrier (BBB) and stimulate peripheral immune response inside central nervous system. In today’s world different approaches employ extracellular vesicle in various therapeutics. This review gives a brief knowledge about the biological relevance of extracellular vesicles in the central nervous system and relevant advances in the translational application of EV in brain disorders.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

EVs:

Extracellular Vesicles

BBB:

Blood Brain Barrier

MVB:

Multivesicular Body

MSC:

Mesenchymal Stem Cell

NSC:

Neural Stem Cell

ALS:

Amyotrophic lateral sclerosis

AD:

Alzheimer’s disease

PD:

Parkinson’s disease

Aβ or Abeta:

Amyloid beta

MS:

Multiple Sclerosis

RT-qPCR:

Real-Time Quantitative Reverse Transcription PCR

CD46:

Cluster of differentiation 46

HIV-1:

Human immunodeficiency viruses type1

SOD1:

Superoxide dismutase

PrPSC :

Scrapie isoform of the prion protein

CSF:

Cerebrospinal fluid

CLN2:

Neuronal ceroidlipofuscinosis 2

TPP1:

Tripeptidyl Peptidase 1

m THPC:

Meta -tetra (hydroxyphenyl)chlorin

HGF:

Hepatocyte growth factor

Cre:

Cyclization recombinase

Cys5:

Cyanines 5

HEK293:

Human embryonic kidney 293 cells

CNS:

Central Nervous System

Wnt:

Wingless/Integrated

IL1-β:

Interleukin-1β

NFT:

Neurofibrillary tangles

APP:

Amyloid Protein Precursor

LBs:

Lewy Bodies

MAPT:

Microtube-associated protein tau

HD:

Huntington’s Disease

mHTT:

mutant Huntingtin protein

polyQ:

polyglutamine protein

PRP:

Prion protein

MDCK:

Madin – Darby Canine Kidney cell line

Pgp:

P glycoprotein

MDR:

Multiple Drug Resistance

References

  1. Welsh, J. A., et al. (2024). Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. Journal of Extracellular Vesicles, 13, e12404. https://doi.org/10.1002/jev2.12404.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Anand, S., Samuel, M., & Mathivanan, S. (2021). Exomeres: a new member of extracellular vesicles family. Subcellular Biochemistry, 97, 89–97. https://doi.org/10.1007/978-3-030-67171-6_5.

  3. Frühbeis, C., Fröhlich, D., & Krämer-Albers, E.-M. (2012). Emerging roles of exosomes in Neuron–Glia communication. Frontiers in Physiology, 3, 119. https://doi.org/10.3389/fphys.2012.00119.

  4. van der Vos, K. E., Balaj, L., Skog, J., & Breakefield, X. O. (2011). Brain tumor microvesicles: Insights into intercellular communication in the nervous system. Cellular and Molecular Neurobiology, 31(6), 949–959. https://doi.org/10.1007/s10571-011-9697-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Di Daniele, A., Antonucci, Y., & Campello, S. (2022). Migrasomes, new vescicles as Hansel and Gretel white pebbles? Biology Direct, 17(1), 8. https://doi.org/10.1186/s13062-022-00321-1.

  6. Zhang, X., Yao, L., & Meng, Y., et al. (2023). Migrasome: a new functional extracellular vesicle. Cell Death Discovery, 9, 381. https://doi.org/10.1038/s41420-023-01673-x.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Van Niel, G., Porto-Carreiro, I., Simoes, S., & Raposo, G. (2006). Exosomes: A common pathway for a specialized function. Journal of Biochemistry, 140, 13–21. https://doi.org/10.1093/jb/mvj128.

    Article  CAS  PubMed  Google Scholar 

  8. Géminard, C., de Gassart, A., Blanc, L., & Vidal, M. (2004). Degradation of AP2 during reticulocyte maturation enhances binding of Hsc70 and alix to a common siteon TfR for sorting into exosomes. Traffic., 5, 181–193. https://doi.org/10.1111/j.1600-0854.2004.0167.x.

    Article  PubMed  Google Scholar 

  9. Stuffers, S., Wegner, C. S., Stenmark, H., & Brech, A. (2009). Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic, 10, 925–937. https://doi.org/10.1111/j.1600-0854.2009.00920.x.

    Article  CAS  PubMed  Google Scholar 

  10. Crescitelli, R., Lässer, C., Szabó, T. G., Kittel, Á., Eldh, M., Dianzani, I., Buzás, E. I., & Lötvall, J. (2013). Distinct RNA profiles in subpopulations of extracellular vesicles: Apoptotic bodies, microvesicles and exosomes. Journal of Extracellular Vesicles, 2, 2. https://doi.org/10.3402/jev.v2i0.20677.

    Article  CAS  Google Scholar 

  11. Sinha, A., Ignatchenko, V., Ignatchenko, A., Mejia-Guerrero, S., & Kislinger, T. (2014). In-depth proteomic analyses of ovarian cancer cell line exosomes reveals differential enrichment of functional categories compared to the NCI 60 proteome. Biochemical and Biophysical Research Communications, 445, 694–701. https://doi.org/10.1016/j.bbrc.2013.12.070.

    Article  CAS  PubMed  Google Scholar 

  12. Escrevente, C., Keller, S., Altevogt, P., & Costa, J. (2011). Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer, 11, 108. https://doi.org/10.1186/1471-2407-11-108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Soto-Heredero, G., Baixauli, F., & Mittelbrunn, M. (2017). Interorganelle communication between mitochondria and the endolysosomal system. Frontiers in Cell Developmental Biology, 5, 95. https://doi.org/10.3389/fcell.2017.00095.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Frühbeis, C., Fröhlich, D., Kuo, W. P., Amphornrat, J., Thilemann, S., Saab, A. S., Kirchhoff, F., Möbius, W., Goebbels, S., Nave, K.-A., Schneider, A., Simons, M., Klugmann, M., Trotter, J. & Krämer-Albers, E.-M. (2013). Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte–neuron communication. PLoS Biology, 11(7), e1001604.

  15. Saint-Pol, J., Gosselet, F., Duban-Deweer, S., Pottiez, G. & Karamanos, Y. (2020). Targeting and crossing the blood-brain barrier with extracellular vesicles. Cells, 9(4), 851.

  16. Lachenal, G., Pernet-Gallay, K., Chivet, M., Hemming, F. J., Belly, A., Bodon, G., Blot, B., Haase, G., Goldberg, Y., & Sadoul, R. (2011). Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Molecular and Cellular Neuroscience, 46(2), 409–418. https://doi.org/10.1016/j.mcn.2010.11.004.

    Article  CAS  PubMed  Google Scholar 

  17. Deshpande, M., & Rodal, A. A. (2015). The crossroads of synaptic growth signaling, membrane traffic and neurological disease: insights from drosophila. Traffic, 17, 87–101. https://doi.org/10.1111/tra.12345.

    Article  CAS  PubMed  Google Scholar 

  18. Chivet, M., Javalet, C., Laulagnier, K., Blot, B., Hemming, F. J., & Sadoul, R. (2014). Exosomes secreted by cortical neurons upon glutamatergic synapse activation specifically interact with neurons. Journal of Extracellular Vesicles, 3(1), 24722.

  19. Dolcetti, E., Bruno, A., Guadalupi, L., Rizzo, F. R., Musella, A., Gentile, A., De Vito, F., Caioli, S., Bullitta, S., Fresegna, D., Vanni, V., Balletta, S., Sanna, K., Buttari, F., StampanoniBassi, M., Centonze, D. & Mandolesi, G. (2020). Emerging role of extracellular vesicles in the pathophysiology of multiple sclerosis. International Journal of Molecular Sciences, 21(19), 7336.

  20. Serpe, C., Monaco, L., Relucenti, M., Iovino, L., Familiari, P., Scavizzi, F., Raspa, M., Familiari, G., Civiero, L., D’Agnano, I., Limatola, C. & Catalano, M. (2021). Microglia-derived small extracellular vesicles reduce glioma growth by modifying tumor cell metabolism and enhancing glutamate clearance through miR-124. Cells, 10(8), 2066.

  21. Gharbi, T., Zhang, Z., & Yang, G.-Y. (2020). The function of astrocyte mediated extracellular vesicles in central nervous system diseases. Frontiers in Cell and Developmental Biology, 8, 568889. https://doi.org/10.3389/fcell.2020.568889.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tajes, M., Ramos-Fernández, E., Weng-Jiang, X., Bosch-Morató, M., Guivernau, B., Eraso-Pichot, A., & Munoz, F. J. (2014). The blood-brain barrier: structure, function and therapeutic approaches to cross it. Molecular Membrane Biology, 31(5), 152–167.

    Article  CAS  PubMed  Google Scholar 

  23. Ridder, K., Keller, S., Dams, M., Rupp, A.-K., Schlaudraff, J., Del Turco, D., Starmann, J., Macas, J., Karpova, D., Devraj, K., Depboylu, C., Landfried, B., Arnold, B., Plate, K. H., Höglinger, G., Sültmann, H., Altevogt, P. & Momma, S. (2014). Extracellular vesicle-mediated transfer of genetic information between the hematopoietic system and the brain in response to inflammation. PLoS Biology, 12(6), e1001874. https://doi.org/10.1371/journal.pbio.1001874.

  24. Dickens, A. M., Tovar-y-Romo, L. B., Yoo, S.-W., Trout, A. L., Bae, M., Kanmogne, M., Megra, B., Williams, D. W., Witwer, K. W., Gacias, M., Tabatadze, N., Cole, R. N., Casaccia, P., Berman, J. W., Anthony, D. C. & Haughey, N. J. (2017). Astrocyte-shed extracellular vesicles regulate the peripheral leukocyte response to inflammatory brain lesions. Science Signaling, 10(473), eaai7696. https://doi.org/10.1126/scisignal.aai7696.

  25. Banks, W. A., Sharma, P., Bullock, K. M., Hansen, K. M., Ludwig, N. & Whiteside, T. L. (2020). Transport of extracellular vesicles across the blood-brain barrier: brain pharmacokinetics and effects of inflammation. International Journal of Molecular Sciences, 21(12), 4407.

  26. Raub, T. J., & Audus, K. L. (1990). Adsorptive endocytosis and membrane recycling by cultured primary bovine brain microvessel endothelial cell monolayers. Journal of Cell Science, 97(1), 127–138. https://doi.org/10.1242/jcs.97.1.127.

    Article  CAS  PubMed  Google Scholar 

  27. Chen, C. C., Liu, L., Ma, F., Wong, C. W., Guo, X. E., Chacko, J. V., Farhoodi, H. P., Zhang, S. X., Zimak, J., Ségaliny, A., Riazifar, M., Pham, V., Digman, M. A., Pone, E. J., & Zhao, W. (2016). Elucidation of exosome migration across the Blood–Brain Barrier model in vitro. Cellular and Molecular Bioengineering, 9(4), 509–529. https://doi.org/10.1007/s12195-016-0458-3.

    Article  CAS  PubMed  Google Scholar 

  28. Ludwig, N., Yerneni, S. S., Razzo, B. M., & Whiteside, T. L. (2018). Exosomes from HNSCC promote angiogenesis through reprogramming of endothelial cells. Molecular Cancer Research, 16(11), 1798–1808. https://doi.org/10.1158/1541-7786.mcr-18-0358.

    Article  CAS  PubMed  Google Scholar 

  29. András, I. E., Leda, A., Contreras, M. G., Bertrand, L., Park, M., Skowronska, M., & Toborek, M. (2017). Extracellular vesicles of the blood-brain barrier: Role in the HIV-1 associated amyloid beta pathology. Molecular and Cellular Neuroscience, 79, 12–22. https://doi.org/10.1016/j.mcn.2016.12.006.

    Article  CAS  PubMed  Google Scholar 

  30. Bellingham, S. A., Guo, B., & Hill, A. F. (2012). Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases? Frontiers in Physiology, 3, 25554.

    Article  Google Scholar 

  31. Howitt, J., & Hill, A. F. (2016). Exosomes in the pathology of neurodegenerative diseases. Journal of Biological Chemistry, 291(52), 26589–26597. https://doi.org/10.1074/jbc.r116.757955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Malm, T., Loppi, S., & Kanninen, K. M. (2016). Exosomes in Alzheimer’s disease. Neurochemistry International, 97, 193–199.

    Article  CAS  PubMed  Google Scholar 

  33. Soliman, H. M., Ghonaim, G. A., Gharib, S. M., Chopra, H., Farag, A. K., Hassanin, M. H., Nagah, A., Emad-Eldin, M., Hashem, N. E., Yahya, G., Emam, S. E., Hassan, A. E. A. & Attia, M. S. (2021). Exosomes in Alzheimer’s disease: From being pathological players to potential diagnostics and therapeutics. International Journal of Molecular Sciences, 22(19), 10794.

  34. Pinnell, J. R., Cui, M., & Tieu, K. (2021). Exosomes in Parkinson disease. Journal of Neurochemistry, 157(3), 413–428. https://doi.org/10.1111/jnc.15288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Danzer, K. M., Kranich, L. R., Ruf, W. P., Cagsal-Getkin, O., Winslow, A. R., Zhu, L., Vanderburg, C. R. & McLean, P. J. (2012). Exosomal cell-to-cell transmission of alpha synuclein oligomers. Molecular Neurodegeneration, 7(1), 42.

  36. Motani, A., Wang, Z., Conn, M., Siegler, K., Zhang, Y., Liu, Q., Johnstone, S., Xu, H., Thibault, S., Wang, Y., Connors, R., Le, H., Xu, G., Walker, N., Bei, S., & Coward, P. (2009). Identification and Characterization of a non-retinoid ligand for retinol-binding protein 4 which lowers serum retinol-binding protein 4 levels in vivo *. Journal of Biological Chemistry, 284(12), 7673–7680. https://doi.org/10.1074/jbc.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cheng, L., Zhao, W., & Hill, A. F. (2018). Exosomes and their role in the intercellular trafficking of normal and disease associated prion proteins. Molecular Aspects of Medicine, 60, 62–68. https://doi.org/10.1016/j.mam.2017.11.011.

    Article  CAS  PubMed  Google Scholar 

  38. Cervenakova, L., Saá, P., Yakovleva, O., Vasilyeva, I., de Castro, J., Brown, P., & Dodd, R. (2016). Are prions transported by plasma exosomes? Transfusion and Apheresis Science, 55(1), 70–83. https://doi.org/10.1016/j.transci.2016.07.013.

    Article  PubMed  Google Scholar 

  39. Xiao, L., Hareendran, S., & Loh, Y. P. (2021). Function of exosomes in neurological disorders and brain tumors. Extracellular Vesicles and Circulating Nucleic Acids, 2, 55–79. https://doi.org/10.20517/evcna.2021.04.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Coulson, N. S., Buchanan, H., & Aubeeluck, A. (2007). Social support in cyberspace: A content analysis of communication within a Huntington’s disease online support group. Patient Education and Counseling, 68(2), 173–178. https://doi.org/10.1016/j.pec.2007.06.002.

    Article  PubMed  Google Scholar 

  41. Helder, D. I., Kaptein, A. A., van Kempen, G. M. J., van Houwelingen, J. C., & Roos, R. A. C. (2001). Impact of Huntington’s disease on quality of life. Movement Disorders, 16(2), 325–330. https://doi.org/10.1002/mds.1056.

    Article  CAS  PubMed  Google Scholar 

  42. McColgan, P., & Tabrizi, S. J. (2017). Huntington’s disease: a clinical review. European Journal of Neurology, 25(1), 24–34. https://doi.org/10.1111/ene.13413.

    Article  PubMed  Google Scholar 

  43. Costanzo, M., Abounit, S., Marzo, L., Danckaert, A., Chamoun, Z., Roux, P., & Zurzolo, C. (2013). Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes. Journal of Cell Science, 126, 2685–3678.

    Google Scholar 

  44. Zhang, X., Abels, E. R., Redzic, J. S., Margulis, J., Finkbeiner, S., & Breakefield, X. O. (2016). Potential transfer of polyglutamine and CAG-repeat RNA in extracellular vesicles in Huntington’s disease: background and evaluation in cell culture. Cellular and Molecular Neurobiology, 36(3), 459–470. https://doi.org/10.1007/s10571-016-0350-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bartel, D. P. (2004). MicroRNAs. Cell, 116(2), 281–297. https://doi.org/10.1016/s0092-8674(04)00045-5.

    Article  CAS  PubMed  Google Scholar 

  46. Leidinger, P., Backes, C., Deutscher, S., Schmitt, K., Mueller, S. C., Frese, K., Haas, J., Ruprecht, K., Paul, F., Stähler, C., Lang, C. J., Meder, B., Bartfai, T., Meese, E., & Keller, A. 2013). A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biology, 14(7), R78.

  47. Hoss, A. G., Labadorf, A., Beach, T. G., Latourelle, J. C. & Myers, R. H. (2016). microRNA Profiles in Parkinsona’s disease prefrontal cortex. Frontiers in Aging Neuroscience, 8, 36–44. https://doi.org/10.3389/fnagi.2016.00036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Si, Y., Cui, X., Crossman, D. K., Hao, J., Kazamel, M., Kwon, Y., & King, P. H. (2018). Muscle microRNA signatures as biomarkers of disease progression in amyotrophic lateral sclerosis. Neurobiology of Disease, 114, 85–94. https://doi.org/10.1016/j.nbd.2018.02.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, J., Zhao, B., Zhao, J., & Li, S. (2017). Potential Roles of ExosomalMicroRNAs as Diagnostic Biomarkers and Therapeutic Application in Alzheimer’s Disease. Neural Plasticity, 2017, 1–12. https://doi.org/10.1155/2017/7027380.

    Article  CAS  Google Scholar 

  50. Reed, E. R., Latourelle, J. C., Bockholt, J. H., Bregu, J., Smock, J., Paulsen, J. S., & Myers, R. H. (2017). MicroRNAs in CSF as prodromal biomarkers for Huntington disease in the PREDICT-HD study. Neurology, 90(4), e264–e272. https://doi.org/10.1212/wnl.0000000000004844.

    Article  PubMed  Google Scholar 

  51. Weber, J. A., Baxter, D. H., Zhang, S., Huang, D. Y., How Huang, K., Jen Lee, M., Galas, D. J., & Wang, K. (2010). The MicroRNA Spectrum in 12 Body Fluids. Clinical Chemistry, 56(11), 1733–1741. https://doi.org/10.1373/clinchem.2010.147405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Arron, T., & Wilson, C. (2016). Exosomal MiRNAs as cancer biomarkers and therapeutic targets. Journal of Extracellular Vesicles, 5, 31292. https://doi.org/10.3402/jev.v5.31292.

    Article  CAS  Google Scholar 

  53. Lu, X., Kim-Han, J. S., & Harmon, S., et al. (2014). The Parkinsonian mimetic, 6-OHDA, impairs axonal transport in dopaminergic axons. Molecular Neurodegeneration, 9, 17. https://doi.org/10.1186/1750-1326-9-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ba, Q., et al. (2015). Schisandrin B shows neuroprotective effect in 6-OHDA-Induced Parkinson’s Disease via Inhibiting the Negative Modulation of MiR-34a on Nrf2 Pathway. Biomedicine & Pharmacotherapy, 75, 165–172. https://doi.org/10.1016/j.biopha.2015.07.034.

    Article  CAS  Google Scholar 

  55. Mao, S., et al. (2015). Secreted MiR-34a in astrocytic shedding vesicles enhanced the vulnerability of dopaminergic neurons to neurotoxins by targeting Bcl-2. Protein & Cell, 6, 529–540. https://doi.org/10.1007/s13238-015-0168-y.

    Article  CAS  Google Scholar 

  56. Hall, J., Prabhakar, S., Balaj, L., Lai, C. P., Cerione, R. A., & Breakefield, X. O. (2016). Delivery of therapeutic proteins via extracellular vesicles: review and potential treatments for Parkinson’s disease, glioma, and schwannoma. Cellular and Molecular Neurobiology, 36(3), 417–427. https://doi.org/10.1007/s10571-015-0309-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Haney, M. J., Zhao, Y., Jin, Y. S., & Batrakova, E. V. (2020). Extracellular vesicles as drug carriers for enzyme replacement therapy to treat CLN2 batten disease: optimization of drug administration routes. Cells, 9(5), 1273.

  58. Malhotra, S., Dumoga, S., Sirohi, P., & Singh, N. (2019). Red blood cells-derived vesicles for delivery of lipophilic drug camptothecin. ACS Applied Materials & Interfaces, 11(25), 22141–22151.

    Article  CAS  Google Scholar 

  59. Wu, W.-C., Tian, J., Xiao, D., Guo, Y.-X., Xiao, Y., Wu, X.-Y., Casella, G., Rasouli, J., Yan, Y.-P., Rostami, A., Wang, L.-B., Zhang, Y., & Li, X. (2022). Engineered extracellular vesicles encapsulated Bryostatin-1 as therapy for neuroinflammation. Nanoscale, 14(6), 2393–2410. https://doi.org/10.1039/d1nr05517h.

    Article  CAS  PubMed  Google Scholar 

  60. Nakano, M. & Fujimiya, M. (2021). Potential effects of mesenchymal stem cell derived extracellular vesicles and exosomalmiRNAs in neurological disorders. Neural Regeneration Research, 16(12), 2359.

  61. Cai, J., Wu, J., Wang, J., Li, Y., Hu, X., Luo, S., & Xiang, D. (2020). Extracellular vesicles derived from different sources of mesenchymal stem cells: therapeutic effects and translational potential. Cell & Bioscience, 10(1), 69. https://doi.org/10.1186/s13578-020-00427-x.

    Article  CAS  Google Scholar 

  62. Liu, W., Ma, Z., Li, J., & Kang, X. (2021). Mesenchymal stem cell-derived exosomes: therapeutic opportunities and challenges for spinal cord injury. Stem Cell Research & Therapy, 12(1), 102. https://doi.org/10.1186/s13287-021-02153-8.

    Article  CAS  Google Scholar 

  63. Stevanato, L., Thanabalasundaram, L., Vysokov, N. & Sinden, J. D. (2016). Investigation of Content, Stoichiometry and Transfer of miRNA from Human Neural Stem Cell Line Derived Exosomes. PLOS ONE, 11(1), e0146353.

  64. Iraci, N., Gaude, E., Leonardi, T., Costa, A. S. H., Cossetti, C., Peruzzotti-Jametti, L., Bernstock, J. D., Saini, H. K., Gelati, M., Vescovi, A. L., Bastos, C., Faria, N., Occhipinti, L. G., Enright, A. J., Frezza, C., & Pluchino, S. (2017). Extracellular vesicles are independent metabolic units with asparaginase activity. Nature Chemical Biology, 13(9), 951–955. https://doi.org/10.1038/nchembio.2422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Apodaca, L. A., Baddour, A. A. D., Garcia, C., Alikhani, L., Giedzinski, E., Ru, N., Agrawal, A., Acharya, M. M., & Baulch, J. E. (2021). Human neural stem cell-derived extracellular vesicles mitigate hallmarks of Alzheimer’s disease. Alzheimer’s Research & Therapy, 13(1), 57. https://doi.org/10.1186/s13195-021-00791-x.

  66. Wang, C., Borger, V., & Sardari, M., et al. (2020). Mesenchymal stromal cell-derived small extracellular vesicles induce ischemic neuroprotection by modulating leukocytes and specifically neutrophils. Stroke, 51, 1825–1834. https://doi.org/10.1161/STROKEAHA.119.028012.

    Article  CAS  PubMed  Google Scholar 

  67. Costa, L. A., Eiro, N., & Fraile, M., et al. (2021). Functional heterogeneity of mesenchymal stem cells from natural niches to culture conditions: implications for further clinical uses. Cellular and Molecular Life Sciences, 78, 447–467. https://doi.org/10.1007/s00018-020-03600-0.

    Article  CAS  PubMed  Google Scholar 

  68. de Almeida Fuzeta, M., Bernardes, N., & Oliveira, F. D., et al. (2020). Scalable production of human mesenchymal stromal cell-derived extracellular vesicles under serum-/xeno-free conditions in a microcarrier-based bioreactor culture system. Frontiers in Cell Developmental Biology, 8, 553444. https://doi.org/10.3389/fcell.2020.553444.b500df7c63514a22843cbaa239e4e991.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Nalamolu, K. R., Venkatesh, I., & Mohandass, A., et al. (2019). Exosomes treatment mitigates ischemic brain damage but does not improve post-stroke neurological outcome. Cellular Physiology and Biochemistry, 52, 12801291. https://doi.org/10.33594/000000090.5c9033bb723d440d8d5b69c822e60a2a.

    Article  Google Scholar 

  70. Hiroaki, K., et al. Advances of engineered extracellular vesicles-based therapeutics strategy. Science and Technology of Advanced Materials, 23(1), 655–681, www.ncbi.nlm.nih.gov/pmc/articles/PMC9586594/, https://doi.org/10.1080/14686996.2022.2133342.

  71. Kanada, M., Bachmann, M. H., Hardy, J. W., Frimannson, D. O., Bronsart, L., Wang, A., Sylvester, M. D., Schmidt, T. L., Kaspar, R. L., Butte, M. J., Matin, A. C., & Contag, C. H. (2015). Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proceedings of the National Academy of Sciences, 112(12), E1433–E1442. https://doi.org/10.1073/pnas.1418401112.

  72. Millard, M., Yakavets, I., Piffoux, M., Brun, A., Gazeau, F., Guigner, J.-M., Jasniewski, J., Lassalle, H.-P., Wilhelm, C., & Bezdetnaya, L. (2018). mTHPC-loaded extracellular vesicles outperform liposomal and free mTHPC formulations by an increased stability, drug delivery efficiency and cytotoxic effect in tridimensional model of tumors. Drug Delivery, 25(1), 1790–1801. https://doi.org/10.1080/10717544.2018.1513609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang, H., Wang, Y., Bai, M., Wang, J., Zhu, K., Liu, R., Ge, S., Li, J., Ning, T., Deng, T., Fan, Q., Li, H., Sun, W., Ying, G., & Ba, Y. (2018). Exosomes serve as nanoparticles to suppress tumor growth and angiogenesis in gastric cancer by delivering hepatocyte growth factor siRNA. Cancer Science, 109(3), 629–641. https://doi.org/10.1111/cas.13488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Familtseva, A., Jeremic, N., & Tyagi, S. C. (2019). Exosomes: cell-created drug delivery systems. Molecular and Cellular Biochemistry, 459(1-2), 1–6. https://doi.org/10.1007/s11010-019-03545-4.

    Article  CAS  PubMed  Google Scholar 

  75. Kim, M. S., Haney, M. J., Zhao, Y., Mahajan, V., Deygen, I., Klyachko, N. L., Inskoe, E., Piroyan, A., Sokolsky, M., Okolie, O., Hingtgen, S. D., Kabanov, A. V., & Batrakova, E. V. (2016). Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine: Nanotechnology, Biology and Medicine, 12(3), 655–664. https://doi.org/10.1016/j.nano.2015.10.012.

    Article  CAS  PubMed  Google Scholar 

  76. Gong, C., Tian, J., Wang, Z., Gao, Y., Wu, X., Ding, X., Qiang, L., Li, G., Han, Z., Yuan, Y., & Gao, S. (2019). Functional exosome-mediated co-delivery of doxorubicin and hydrophobically modified microRNA 159 for triple-negative breast cancer therapy. Journal of Nanobiotechnology, 17, 10. https://doi.org/10.1186/s12951-019-0526-7.

  77. Nakase, I., & Futaki, S. (2015). Combined treatment with a pH-sensitive fusogenic peptide and cationic lipids achieves enhanced cytosolic delivery of exosomes. Science Report, 5, 10112.

    Article  Google Scholar 

  78. Joshi, B. S., et al. (2020). Endocytosis of extracellular vesicles and release of their cargo from endosomes. ACS Nano, 14(4), 4444–4455. https://doi.org/10.1021/acsnano.9b10033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Culbreath, K., Keefe, G., & Nes, E., et al. (2024). Association between neurodevelopmental outcomes and concomitant presence of NEC and IVH in extremely low birth weight infants. Journal of Perinatology, 44, 108–115. https://doi.org/10.1038/s41372-023-01780-8.

    Article  PubMed  Google Scholar 

  80. Chen, P. Y., Hsieh, H. Y., Huang, C. Y., Lin, C. Y., Wei, K. C. & Liu, H. L. (2015). Focused ultrasound-induced blood-brain barrier opening to enhance interleukin-12 delivery for brain tumor immunotherapy: a preclinical feasibility study. Journal of Translational Medicine, 13, 93.

  81. Yang, J., Zhang, X., Chen, X., Wang, L., & Yang, G. (2017). Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia. Molecular Therapy Nucleic Acids, 7, 278–287. https://doi.org/10.1016/j.omtn.2017.04.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Vogel, A., Upadhya, R., & Shetty, A. K. (2018). Neural stem cell derived extracellular vesicles: Attributes and prospects for treating neurodegenerative disorders. EBioMedicine, 38, 273–282. https://doi.org/10.1016/j.ebiom.2018.11.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kooijmans, S. A. A., et al. PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time. Journal of Controlled Release: Official Journal of the Controlled Release Society, 224, 77–85, www.ncbi.nlm.nih.gov/pubmed/26773767, https://doi.org/10.1016/j.jconrel.2016.01.009.

  84. Wiklander, O. P. B., et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. Journal of Extracellular Vesicles, 4(1), 26316. www.ncbi.nlm.nih.gov/pmc/articles/PMC4405624/, https://doi.org/10.3402/jev.v4.26316.

  85. Dharap, A., Bowen, K., Place, R., Li, L.-C., & Vemuganti, R. (2009). Transient focal ischemia induces extensive temporal changes in rat cerebral MicroRNAome. Journal of Cerebral Blood Flow & Metabolism, 29(4), 675–687. https://doi.org/10.1038/jcbfm.2008.157.

    Article  CAS  Google Scholar 

  86. Yin, K.-J., Deng, Z., Hamblin, M., Xiang, Y., Huang, H., Zhang, J., Jiang, X., Wang, Y., & Chen, Y. E. (2010). Peroxisome proliferator-activated receptor δ regulation of miR-15a in ischemia-induced cerebral vascular endothelial injury. Journal of Neuroscience, 30(18), 6398–6408. https://doi.org/10.1523/JNEUROSCI.0780-10.2010.

    Article  CAS  PubMed  Google Scholar 

  87. Hébert, S. S., Horré, K., Nicolaï, L., Bergmans, B., Papadopoulou, A. S., Delacourte, A., & De Strooper, B. (2009). MicroRNA regulation of Alzheimer’s Amyloid precursor protein expression. Neurobiology of Disease, 33(3), 422–428. https://doi.org/10.1016/j.nbd.2008.11.009.

    Article  CAS  PubMed  Google Scholar 

  88. Zhao, Y., Zhao, R., Wu, J., Wang, Q., Pang, K., Shi, Q., Gao, Q., Hu, Y., Dong, X., Zhang, J., & Sun, J. (2018). Melatonin protects against Aβ ‐induced neurotoxicity in primary neurons via miR‐132/PTEN/AKT/FOXO3a pathway. BioFactors, 44(6), 609–618. https://doi.org/10.1002/biof.1411.

    Article  CAS  PubMed  Google Scholar 

  89. Wang, R., Chopra, N., Nho, K., Maloney, B., Obukhov, A. G., Nelson, P. T., Counts, S. E., & Lahiri, D. K. (2022). Human microRNA (miR-20b-5p) modulates Alzheimer’s disease pathways and neuronal function, and a specific polymorphism close to the MIR20B gene influences Alzheimer’s biomarkers. Molecular Psychiatry, 27(2), 1256–1273. https://doi.org/10.1038/s41380-021-01351-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kim, W., Lee, Y., McKenna, N. D., Yi, M., Simunovic, F., Wang, Y., Kong, B., Rooney, R. J., Seo, H., Stephens, R., & Sonntag, K. C. (2014). miR-126 contributes to Parkinson disease by dysregulating IGF-1/PI3K signaling. Neurobiology of Aging, 35(7), 1712–1721. https://doi.org/10.1016/j.neurobiolaging.2014.01.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang, Q., Wang, Y., Zhou, F., Li, J., Lu, G. & Zhao, Y. (2021). MiR-20a-5p Regulates MPP+-Induced Oxidative Stress and Neuroinflammation in HT22 Cells by Targeting IRF9/NF-κB Axis. Evidence-Based Complementary and Alternative Medicine, 2021, e6621206.

  92. Kojima, R., Bojar, D., Rizzi, G., Hamri, G. C.-E., El-Baba, M. D., Saxena, P., Ausländer, S., Tan, K. R., & Fussenegger, M. (2018). Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment. Nature Communications, 9(1), 1–10. https://doi.org/10.1038/s41467-018-03733-8.

    Article  CAS  Google Scholar 

  93. Katakowski, M., Buller, B., Zheng, X., Lu, Y., Rogers, T., Osobamiro, O., Shu, W., Jiang, F., & Chopp, M. (2013). Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Letters, 335(1), 201–204. https://doi.org/10.1016/j.canlet.2013.02.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Xin, H., Li, Y., Buller, B., Katakowski, M., Zhang, Y., Wang, X., Shang, X., Zhang, Z. G., & Chopp, M. (2012). Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells, 30(7), 1556–1564. https://doi.org/10.1002/stem.1129.

    Article  CAS  PubMed  Google Scholar 

  95. Sterzenbach, U., Putz, U., Low, L.-H., Silke, J., Tan, S.-S., & Howitt, J. (2017). Engineered exosomes as vehicles for biologically active proteins. Molecular Therapy, 25(6), 1269–1278. https://doi.org/10.1016/j.ymthe.2017.03.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Munoz, J. L., Bliss, S. A., Greco, S. J., Ramkissoon, S. H., Ligon, K. L. & Rameshwar, P. (2013). Delivery of functional anti-miR-9 by mesenchymal stem cell-derived exosomes to glioblastoma multiforme cells conferred chemosensitivity. Molecular Therapy - Nucleic Acids, 2, e126.

  97. Yim, N., Ryu, S.-W., Choi, K., Lee, K. R., Lee, S., Choi, H., Kim, J., Shaker, M. R., Sun, W., Park, J.-H., Kim, D., Heo, W. D., & Choi, C. (2016). Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein–protein interaction module. Nature Communications, 7(1), 12277. https://doi.org/10.1038/ncomms12277.

  98. Xia, X., et al. (2022). Exosome: a novel neurotransmission modulator or non-canonical neurotransmitter? Ageing Research Reviews, 74, 101558. https://doi.org/10.1016/j.arr.2021.101558.

    Article  CAS  PubMed  Google Scholar 

Download references

Author Contributions

The authors confirm contribution to the paper as follows: Study conception and design: Dr. Humaira Farooqi. Data collection: Shahid Afridi and Pradakshina Sharma. Contributed data or analysis tools: Shahid Afridi, Pradakshina Sharma, Furqan Choudhary, Amber Rizwan, Anam Nizam. Draft manuscript preparation: Furqan Choudhary, Amber Rizwan, Anam Nizam, Adil Parvez. All authors reviewed the results and approved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humaira Farooqi.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afridi, S., Sharma, P., Choudhary, F. et al. Extracellular Vesicles: A New Approach to Study the Brain’s Neural System and Its Diseases. Cell Biochem Biophys (2024). https://doi.org/10.1007/s12013-024-01271-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12013-024-01271-3

Keywords

Navigation