Skip to main content
Log in

Understanding CFTR Functionality: A Comprehensive Review of Tests and Modulator Therapy in Cystic Fibrosis

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Cystic fibrosis is a genetic disorder inherited in an autosomal recessive manner. It is caused by a mutation in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene on chromosome 7, which leads to abnormal regulation of chloride and bicarbonate ions in cells that line organs like the lungs and pancreas. The CFTR protein plays a crucial role in regulating chloride ion flow, and its absence or malfunction causes the production of thick mucus that affects several organs. There are more than 2000 identified mutations that are classified into seven categories based on their dysfunction mechanisms. In this article, we have conducted a thorough examination and consolidation of the diverse array of tests essential for the quantification of CFTR functionality. Furthermore, we have engaged in a comprehensive discourse regarding the recent advancements in CFTR modulator therapy, a pivotal approach utilized for the management of cystic fibrosis, alongside its concomitant relevance in evaluating CFTR functionality.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Villamizar, O., et al. (2019). Targeted activation of cystic fibrosis transmembrane conductance regulator. Molecular Therapy, 27(10), 1737–1748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. [cited 2023 22-08-2023]; Available from: https://www.yourgenome.org/facts/what-is-cystic-fibrosis/.

  3. Cutting, G. R. (2015). Cystic fibrosis genetics: from molecular understanding to clinical application. Nature Reviews Genetics, 16(1), 45–56.

    Article  CAS  PubMed  Google Scholar 

  4. Guggino, W. B., & Stanton, B. A. (2006). New insights into cystic fibrosis: molecular switches that regulate CFTR. Nature Reviews Molecular Cell Biology, 7(6), 426–436.

    Article  CAS  PubMed  Google Scholar 

  5. Lopes-Pacheco, M. (2019). CFTR modulators: the changing face of cystic fibrosis in the era of precision medicine. Frontiers in Pharmacology, 10, 1662.

    Article  CAS  PubMed  Google Scholar 

  6. De Boeck, K., & Amaral, M. D. (2016). Progress in therapies for cystic fibrosis. The Lancet Respiratory Medicine, 4(8), 662–674.

    Article  PubMed  Google Scholar 

  7. Mall, M. A., & Hartl, D. (2014). CFTR: cystic fibrosis and beyond. European Respiratory Society.

  8. Winikates, K. (2012). Cystic fibrosis transmembrane conductance regulator (CFTR) gene. In Embryo Project Encyclopedia. Arizona State University. School of Life Sciences. Center for Biology and Society. Embryo Project Encyclopedia.

  9. Verkman, A. S., et al. (2013). CFTR inhibitors. Current Pharmaceutical Design, 19(19), 3529–3541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. [cited 2023 06-10-2023]; Available from: https://www.mayoclinic.org/diseases-conditions/cystic-fibrosis/symptoms-causes/syc-20353700.

  11. Lyczak, J. B., Cannon, C. L., & Pier, G. B. (2002). Lung infections associated with cystic fibrosis. Clinical Microbiology Reviews, 15(2), 194–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Quinton, P. M. (1999). Physiological basis of cystic fibrosis: a historical perspective. Physiological Reviews, 79(1), S3–S22.

    Article  CAS  PubMed  Google Scholar 

  13. Barbry, P., Marcet, B. & Caballero, I. (2021). Where is the cystic fibrosis transmembrane conductance regulator? American Thoracic Society, 10, 1214–1216.

    Google Scholar 

  14. Hull, J. (2012). Cystic fibrosis transmembrane conductance regulator dysfunction and its treatment. Journal of the Royal Society of Medicine, 105(2), 2–8.

    Article  Google Scholar 

  15. Antigny, F., et al. (2011). CFTR and Ca2+ signaling in cystic fibrosis. Frontiers in Pharmacology, 2, 67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gadsby, D. C., Vergani, P., & Csanády, L. (2006). The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature, 440(7083), 477–483.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Liu, F., et al. (2017). Molecular structure of the human CFTR ion channel. Cell, 169(1), 85–95.e8.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, Z., Liu, F., & Chen, J. (2018). Molecular structure of the ATP-bound, phosphorylated human CFTR. Proceedings of the National Academy of Sciences, 115(50), 12757–12762.

    Article  CAS  ADS  Google Scholar 

  19. Kim, S. J., & Skach, W. R. (2012). Mechanisms of CFTR folding at the endoplasmic reticulum. Frontiers in Pharmacology, 3, 201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Quinton, P. M. (2001). The neglected ion: HCO3−. Nature Medicine, 7(3), 292–293.

    Article  CAS  PubMed  Google Scholar 

  21. Boucher, R. C. (2007). Cystic fibrosis: a disease of vulnerability to airway surface dehydration. Trends in Molecular Medicine, 13(6), 231–240.

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Della Sala, A., et al. (2021). Role of protein kinase A-mediated phosphorylation in CFTR channel activity regulation. Frontiers in Physiology, 12, 690247.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chen, J.-H. (2020). Protein kinase A phosphorylation potentiates cystic fibrosis transmembrane conductance regulator gating by relieving autoinhibition on the stimulatory C terminus of the regulatory domain. Journal of Biological Chemistry, 295(14), 4577–4590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li, H., et al. (2018). Therapeutic approaches to CFTR dysfunction: from discovery to drug development. Journal of Cystic Fibrosis, 17(2), S14–S21.

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  25. Hwang, T.-C., et al. (2018). Structural mechanisms of CFTR function and dysfunction. Journal of General Physiology, 150(4), 539–570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. [cited 2023 25-04-2023]; Available from: https://cftr2.org/mutations_history.

  27. Zemanick, E.T. & Polineni, D. (2019). Unraveling the CFTR function–phenotype connection for precision treatment in cystic fibrosis. American Thoracic Society, 199(9), 1053–1054.

    Google Scholar 

  28. Wilschanski, M. (2012). Class 1 CF mutations. Frontiers in Pharmacology, 3, 117.

    Article  PubMed  PubMed Central  Google Scholar 

  29. De Boeck, K., et al. (2014). The relative frequency of CFTR mutation classes in European patients with cystic fibrosis. Journal of Cystic Fibrosis, 13(4), 403–409.

    Article  PubMed  Google Scholar 

  30. Du, K., Sharma, M., & Lukacs, G. L. (2005). The ΔF508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR. Nature Structural & Molecular Biology, 12(1), 17–25.

    Article  CAS  Google Scholar 

  31. Lukacs, G., et al. (1993). The delta F508 mutation decreases the stability of cystic fibrosis transmembrane conductance regulator in the plasma membrane. Determination of functional half-lives on transfected cells. Journal of Biological Chemistry, 268(29), 21592–21598.

    Article  CAS  PubMed  Google Scholar 

  32. Yu, H., et al. (2012). Ivacaftor potentiation of multiple CFTR channels with gating mutations. Journal of Cystic Fibrosis, 11(3), 237–245.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  33. LaRusch, J., et al. (2014). Mechanisms of CFTR functional variants that impair regulated bicarbonate permeation and increase risk for pancreatitis but not for cystic fibrosis. PLoS Genetics, 10(7), e1004376.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ramalho, A. S., et al. (2009). Deletion of CFTR translation start site reveals functional isoforms of the protein in CF patients. Cellular Physiology and Biochemistry, 24(5-6), 335–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pranke, I., et al. (2019). Emerging therapeutic approaches for cystic fibrosis. From gene editing to personalized medicine. Frontiers in Pharmacology, 10, 121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Norez, C., et al. (2004). Determination of CFTR chloride channel activity and pharmacology using radiotracer flux methods. Journal of Cystic Fibrosis, 3, 119–121.

    Article  CAS  PubMed  Google Scholar 

  37. Long, K. J., & Walsh, K. B. (1997). Iodide efflux measurements with an iodide-selective electrode: a non-radioactive procedure for monitoring cellular chloride transport. Methods in Cell Science, 19, 207–212.

    Article  Google Scholar 

  38. Ramalho, A. S., et al. (2022). Assays of CFTR function in vitro, ex vivo and in vivo. International Journal of Molecular Sciences, 23(3), 1437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Orosz, D. E., & Garlid, K. D. (1993). A sensitive new fluorescence assay for measuring proton transport across liposomal membranes. Analytical Biochemistry, 210(1), 7–15.

    Article  CAS  PubMed  Google Scholar 

  40. Munkonge, F., et al. (2004). Measurement of halide efflux from cultured and primary airway epithelial cells using fluorescence indicators. Journal of Cystic Fibrosis, 3, 171–176.

    Article  CAS  PubMed  Google Scholar 

  41. Verkman, A. S., & Jayaraman, S. (2002). Fluorescent indicator methods to assay functional CFTR expression in cells. In Cystic fibrosis methods and protocols, Springer, 187–196.

  42. Smith, E., et al. (2017). A homogeneous cell-based halide-sensitive yellow fluorescence protein assay to identify modulators of the cystic fibrosis transmembrane conductance regulator ion channel. Assay and Drug Development Technologies, 15(8), 395–406.

    Article  CAS  PubMed  Google Scholar 

  43. Clancy, J. P., et al. (2019). CFTR modulator theratyping: current status, gaps and future directions. Journal of Cystic Fibrosis, 18(1), 22–34.

    Article  CAS  PubMed  Google Scholar 

  44. Maitra, R., Sivashanmugam, P., & Warner, K. (2013). A rapid membrane potential assay to monitor CFTR function and inhibition. Journal of Biomolecular Screening, 18(9), 1132–1137.

    Article  PubMed  Google Scholar 

  45. McManus, O. B., et al. (2012). Ion channel screening. In Assay Guidance Manual [Internet].

  46. Kodirov, S. A. (2023). Whole-cell patch-clamp recording and parameters. Biophysical Reviews 1–32.

  47. Cai, Z., et al. (2011). Application of high-resolution single-channel recording to functional studies of cystic fibrosis mutants. In Cystic fibrosis: diagnosis and protocols, Vol. I: Approaches to study and correct CFTR defects, Springer, 419–441.

  48. Billet, A., et al. (2017). Development of automated patch clamp technique to investigate CFTR chloride channel function. Frontiers in Pharmacology, 8, 195.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Karaki, S.-I., & Kuwahara, A. (2004). Electrophysiological measurement of transepithelial ion transport: short-circuit current (Ussing chamber) technique. Nihon Yakurigaku zasshi Folia Pharmacologica Japonica, 123(3), 211–218.

    Article  CAS  PubMed  Google Scholar 

  50. De Jonge, H. R., et al. (2004). Ex vivo CF diagnosis by intestinal current measurements (ICM) in small aperture, circulating Ussing chambers. Journal of Cystic Fibrosis, 3, 159–163.

    Article  PubMed  Google Scholar 

  51. de Winter–de Groot, K. M., et al. (2020). Forskolin-induced swelling of intestinal organoids correlates with disease severity in adults with cystic fibrosis and homozygous F508del mutations. Journal of Cystic Fibrosis, 19(4), 614–619.

    Article  PubMed  Google Scholar 

  52. [cited 2023 19-08-2023]; Available from: https://www.huborganoids.nl/forskolin-induced-swelling-fis-assay/#:~:text=Activation%20of%20CFTR%20by%20forskolin%20leads%20to%20chloride,is%20determined%20as%20a%20measure%20for%20CFTR%20activity.

  53. Conti, J., Sorio, C., & Melotti, P. (2022). Organoid technology and its role for Theratyping applications in cystic fibrosis. Children, 10(1), 4.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Aalbers, B., et al. (2022). Forskolin induced swelling (FIS) assay in intestinal organoids to guide eligibility for compassionate use treatment in a CF patient with a rare genotype. Journal of Cystic Fibrosis, 21(2), 254–257.

    Article  CAS  PubMed  Google Scholar 

  55. Sousa, M., et al. (2012). Measurements of CFTR-mediated Cl− secretion in human rectal biopsies constitute a robust biomarker for cystic fibrosis diagnosis and prognosis, e47708.

  56. Graeber, S. Y., et al. (2015). Intestinal current measurements detect activation of mutant CFTR in patients with cystic fibrosis with the G551D mutation treated with ivacaftor. American Journal of Respiratory and Critical Care Medicine, 192(10), 1252–1255.

    Article  PubMed  Google Scholar 

  57. Amaral, M. D., et al. (2019). Theranostics by testing CFTR modulators in patient-derived materials: the current status and a proposal for subjects with rare CFTR mutations. Journal of Cystic Fibrosis, 18(5), 685–692.

    Article  CAS  PubMed  Google Scholar 

  58. Collaco, J. M., et al. (2016). Sources of variation in sweat chloride measurements in cystic fibrosis. American Journal of Respiratory and Critical Care Medicine, 194(11), 1375–1382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. [cited 2023 05-03-2023]; Available from: https://www.cff.org/intro-cf/sweat-test.

  60. McKone, E. F., et al. (2015). Association of sweat chloride concentration at time of diagnosis and CFTR genotype with mortality and cystic fibrosis phenotype. Journal of Cystic Fibrosis, 14(5), 580–586.

    Article  CAS  PubMed  Google Scholar 

  61. Reynaerts, A., et al. (2022). Needle-free iontophoresis-driven β-adrenergic sweat rate test. Journal of Cystic Fibrosis, 21(3), 407–415.

    Article  CAS  PubMed  Google Scholar 

  62. Quinton, P., et al. (2012). β-adrenergic sweat secretion as a diagnostic test for cystic fibrosis. American Journal of Respiratory and Critical Care Medicine, 186(8), 732–739.

    Article  PubMed  Google Scholar 

  63. Pallenberg, S. T., et al. (2022). CFTR modulation with elexacaftor-tezacaftor-ivacaftor in people with cystic fibrosis assessed by the β-adrenergic sweat rate assay. Journal of Cystic Fibrosis, 21(3), 442–447.

    Article  CAS  PubMed  Google Scholar 

  64. Salinas, D. B., et al. (2020). Image-based β-adrenergic sweat rate assay captures minimal cystic fibrosis transmembrane conductance regulator function. Pediatric Research, 87(1), 137–145.

    Article  CAS  PubMed  Google Scholar 

  65. Zampoli, M., et al. (2023). β‐adrenergic sweat test in children with inconclusive cystic fibrosis diagnosis: Do we need new reference ranges? Pediatric Pulmonology, 58(1), 187–196.

    Article  PubMed  Google Scholar 

  66. Rowe, S. M., J. P. Clancy, J. P., & Wilschanski, M. (2011). Nasal potential difference measurements to assess CFTR ion channel activity. In Cystic fibrosis: diagnosis and protocols, Vol. I: Approaches to study and correct CFTR defects, Springer, 69–86.

  67. Su, Z., et al. (2016). Systematic review and meta-analysis of nasal potential difference in hypoxia-induced lung injury. Scientific Reports, 6(1), 30780.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  68. Sloane, P. A., & Rowe, S. M. (2010). Cystic fibrosis transmembrane conductance regulator protein repair as a therapeutic strategy in cystic fibrosis. Current Opinion in Pulmonary Medicine, 16(6), 591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lopes-Pacheco, M. (2020). CFTR modulators: the changing face of cystic fibrosis in the era of precision medicine. Frontiers in Pharmacology, 10, 1662.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Thibodeau, P. H., et al. (2010). The cystic fibrosis-causing mutation ΔF508 affects multiple steps in cystic fibrosis transmembrane conductance regulator biogenesis. Journal of Biological Chemistry, 285(46), 35825–35835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Miki, H., et al. (2010). Potentiation of disease-associated cystic fibrosis transmembrane conductance regulator mutants by hydrolyzable ATP analogs. Journal of Biological Chemistry, 285(26), 19967–19975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Molinski, S. V., et al. (2017). O rkambi® and amplifier co‐therapy improves function from a rare CFTR mutation in gene‐edited cells and patient tissue. EMBO Molecular Medicine, 9(9), 1224–1243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kunzelmann, K., & Mall, M. (2003). Pharmacotherapy of the ion transport defect in cystic fibrosis: role of purinergic receptor agonists and other potential therapeutics. American Journal of Respiratory Medicine, 2, 299–309.

    Article  CAS  PubMed  Google Scholar 

  74. [cited 2023 08-03-2023]; Available from: https://go.drugbank.com/drugs/DB09280.

  75. Wang, X., et al. (2018). Discovery of 4-[(2 R, 4 R)-4-({[1-(2, 2-Difluoro-1, 3-benzodioxol-5-yl) cyclopropyl] carbonyl} amino)-7-(difluoromethoxy)-3, 4-dihydro-2 H-chromen-2-yl] benzoic Acid (ABBV/GLPG-2222), a potent cystic fibrosis transmembrane conductance regulator (CFTR) corrector for the treatment of cystic fibrosis. ACS Publications

  76. Scanio, M. J., et al. (2019). Discovery of ABBV/GLPG-3221, a potent corrector of CFTR for the treatment of cystic fibrosis. ACS Medicinal Chemistry Letters, 10(11), 1543–1548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Brindani, N., et al. (2020). Identification, structure–activity relationship, and biological characterization of 2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indoles as a novel class of CFTR potentiators. Journal of Medicinal Chemistry, 63(19), 11169–11194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Steven, E. V. D. P.(2021). Discovery of GLPG2451, a Novel Once Daily Potentiator for the Treatment of Cystic Fibrosis. Journal of Medicinal Chemistry, 64(1), 343–353.

    Article  ADS  Google Scholar 

  79. [cited 2023 25-05-2023]; Available from: https://clinicaltrials.gov/ct2/show/study/NCT03540524#outcomemeasures.

  80. [cited 2023 21-08-2023]; Available from: https://cysticfibrosisnewstoday.com/news/galapagos-announces-advancement-glpg2665-triple-combination-treatment-cystic-fibrosis-patients/.

  81. O’Brien, P. D., & Collum, L. M. (2004). Dry eye: diagnosis and current treatment strategies. Current Allergy and Asthma Reports, 4(4), 314–319.

    Article  PubMed  Google Scholar 

  82. Uchino, M., & Schaumberg, D. A. (2013). Dry eye disease: impact on quality of life and vision. Current Ophthalmology Reports, 1, 51–57.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Shah, S., & Jani, H. (2015). Prevalence and associated factors of dry eye: our experience in patients above 40 years of age at a Tertiary Care Center. Oman Journal of Ophthalmology, 8(3), 151.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Yamaguchi, T. (2018). Inflammatory response in dry eye. Investigative Ophthalmology & Visual Science, 59(14), DES192–DES199.

    Article  CAS  Google Scholar 

  85. Pucker, A. D., Ng, S. M. & Nichols, J. J. (2016). Over the counter (OTC) artificial tear drops for dry eye syndrome. Cochrane Database of Systematic Reviews (2), 2(2), CD009729.

    Google Scholar 

  86. Tatlipinar, S., & Akpek, E. K. (2005). Topical ciclosporin in the treatment of ocular surface disorders. British Journal of Ophthalmology, 89(10), 1363–1367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wu, D., et al. (2015). Efficacy and safety of topical diquafosol ophthalmic solution for treatment of dry eye: a systematic review of randomized clinical trials. Cornea, 34(6), 644–650.

    Article  PubMed  Google Scholar 

  88. Itoh, R., et al. (2000). Isolation and characterization of a Ca2+-activated chloride channel from human corneal epithelium. Current Eye Research, 21(6), 918–925.

    Article  CAS  PubMed  Google Scholar 

  89. Turner, H. C., Bernstein, A., & Candia, O. A. (2002). Presence of CFTR in the conjunctival epithelium. Current Eye Research, 24(3), 182–187.

    Article  PubMed  Google Scholar 

  90. Yu, D., et al. (2012). Regional differences in rat conjunctival ion transport activities. American Journal of Physiology-Cell Physiology, 303(7), C767–C780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Flores, A. M., et al. (2016). Small-molecule CFTR activators increase tear secretion and prevent experimental dry eye disease. The FASEB Journal, 30(5), 1789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Massingale, M. L., et al. (2009). Analysis of inflammatory cytokines in the tears of dry eye patients. Cornea, 28(9), 1023–1027.

    Article  PubMed  Google Scholar 

  93. Bron, A. J., et al. (2017). Tfos dews ii pathophysiology report. The Ocular Surface, 15(3), 438–510.

    Article  PubMed  Google Scholar 

  94. Lee, H. K., et al. (2021). Isorhamnetin ameliorates dry eye disease via CFTR activation in mice. International Journal of Molecular Sciences, 22(8), 3954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jeon, D., et al. (2022). Novel CFTR activator Cact-3 ameliorates ocular surface dysfunctions in scopolamine-induced dry eye mice. International Journal of Molecular Sciences, 23(9), 5206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. McKone, E. F., et al. (2003). Effect of genotype on phenotype and mortality in cystic fibrosis: a retrospective cohort study. The Lancet, 361(9370), 1671–1676.

    Article  CAS  Google Scholar 

  97. Flume, P. A., et al. (2007). Cystic fibrosis pulmonary guidelines: chronic medications for maintenance of lung health. American Journal of Respiratory and Critical Care Medicine, 176(10), 957–969.

    Article  CAS  PubMed  Google Scholar 

  98. Popp, M. W., & Maquat, L. E. (2016). Leveraging rules of nonsense-mediated mRNA decay for genome engineering and personalized medicine. Cell, 165(6), 1319–1322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Moskowitz, S. M., et al. (2008). Clinical practice and genetic counseling for cystic fibrosis and CFTR-related disorders. Genetics in Medicine, 10(12), 851–868.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Antunovic, S., Lukac, M., & Vujovic, D. (2013). Longitudinal cystic fibrosis care. Clinical Pharmacology & Therapeutics, 93(1), 86–97.

    Article  CAS  Google Scholar 

  101. Elborn, J. S. (2016). Cystic fibrosis. Lancet, 388(10059), 2519–2531.

    Article  CAS  PubMed  Google Scholar 

  102. Davies, J. C., et al. (2013). Efficacy and safety of ivacaftor in patients aged 6 to 11 years with cystic fibrosis with a G551D mutation. American Journal of Respiratory and Critical Care Medicine, 187(11), 1219–1225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Davis, P. B., Yasothan, U., & Kirkpatrick, P. (2012). Ivacaftor. Nature Reviews Drug Discovery, 11(5), 349–351.

    Article  CAS  PubMed  Google Scholar 

  104. Van Goor, F., et al. (2011). Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proceedings of the National Academy of Sciences, 108(46), 18843–18848.

    Article  ADS  Google Scholar 

  105. Wainwright, C. E., et al. (2015). Lumacaftor–ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. New England Journal of Medicine, 373(3), 220–231.

    Article  CAS  PubMed  Google Scholar 

  106. Cheng, P. C., Alexiou, S., & Rubenstein, R. C. (2019). Safety and efficacy of treatment with lumacaftor in combination with ivacaftor in younger patients with cystic fibrosis. Expert Review of Respiratory Medicine, 13(5), 417–423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. [cited 2023 20-08-2023]; Available from: https://go.drugbank.com/drugs/DB11712.

  108. Taylor-Cousar, J. L., et al. (2019). Clinical development of triple-combination CFTR modulators for cystic fibrosis patients with one or two F508del alleles. ERJ Open Research, 5(2), 00082.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Hoy, S. M. (2019). Elexacaftor/ivacaftor/tezacaftor: first approval. Drugs, 79(18), 2001–2007.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our appreciation to Embase for providing access.

Author information

Authors and Affiliations

Authors

Contributions

Ankita: Collection of data, S.D.: collection of data. R.V.: collection of data. C.K.: Proofreading, R.K.: Proofreading. A.M.: Data interpretation, G.S.: Concept design, and compilation red. S.T.: manuscript idea and writing.

Corresponding author

Correspondence to Gurvinder Singh.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, S., Ankita, Dash, S. et al. Understanding CFTR Functionality: A Comprehensive Review of Tests and Modulator Therapy in Cystic Fibrosis. Cell Biochem Biophys 82, 15–34 (2024). https://doi.org/10.1007/s12013-023-01200-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-023-01200-w

Keywords

Navigation