Skip to main content

Advertisement

Log in

Immune Features of Tumor Microenvironment: A Genetic Spotlight

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

A tumor represents a highly intricate tissue entity, characterized by an exceptionally complex microenvironment that starkly contrasts with the typical physiological surroundings of healthy tissues. Within this tumor microenvironment (TME), every component and factor assume paramount importance in the progression of malignancy and exerts a pivotal influence on a patient’s clinical outcome. One of the remarkable aspects of the TME is its remarkable heterogeneity, not only across different types of cancers but even within the same histological category of tumors. In-depth research has illuminated the intricate interplay between specific immune cells and molecules and the dynamic characteristics of the TME. Recent investigations have yielded compelling evidence that several mutations harbored by tumor cells possess the capacity to instigate substantial alterations in the TME. These mutations, often acting as drivers of tumorigenesis, can orchestrate a cascade of events that remodel the TME, thereby influencing crucial aspects of cancer behavior, including its invasiveness, immune evasion, and response to therapies. It is within this nuanced context that the present study endeavors to provide a concise yet comprehensive summary of how specific mutations, within the genetic landscape of cancer cells, can instigate profound changes in TME features. By elucidating the intricate relationship between genetic mutations and the TME, this research aims to contribute to a deeper understanding of cancer biology. Ultimately, the knowledge gained from this study holds the potential to inform the development of more targeted and effective treatments, thereby offering new hope to patients grappling with the complexities of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

TME:

Tumor microenvironment

ECM:

Extracellular matrix

TAMs:

Tumor-associated macrophages

TILs:

Tumor-infiltrating lymphocytes

MMP:

Matrix metalloproteinase

CTLA-4:

Cytotoxic T lymphocyte-associated protein 4

CIMP:

CpG island methylator phenotype

2-HG:

2-hydroxygluratate

HGSC:

High-grade serous tubo-ovarian cancer

FTE:

Fallopian tube epithelium

g-MDSC:

Granulocytic myeloid-derived suppressor cells

m-MDSC:

Monocytic myeloid-derived suppressor cells

NSCLC:

Non-small-cell lung carcinoma

CNAs:

Copy number abnormalities

HIF1:

Hypoxia-responsive factor

DAG:

Diacylglycerol

LGGs:

Lower-grade glioma

SDC2:

Syndecan-2

GAG:

Glycosaminoglycan

HS:

Heparin sulfate

FGL1:

Fibrinogen-like protein 1

SCCE:

Small Cell carcinoma of the esophagus

VEGF:

Vascular endothelial growth factor

RCC:

Renal cell carcinoma

Tregs:

Regulatory T cells

MDSCs:

Myeloid-derived suppressor cells

MCT1:

Monocarboxylate transporter 1

References

  1. Tabrez, S., Khan, A. U., Hoque, M., Suhail, M., Khan, M. I., & Zughaibi, T. A. (2022). Investigating the anticancer efficacy of biogenic synthesized MgONPs: An in vitro analysis. Frontiers in Chemistry, 10, 970193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alafaleq, N. O., Zughaibi, T. A., Jabir, N. R., Khan, A. U., Khan, M. S., & Tabrez, S. (2023). Biogenic Synthesis of Cu-Mn Bimetallic Nanoparticles Using Pumpkin Seeds Extract and Their Characterization and Anticancer Efficacy. Nanomaterials (Basel, Switzerland), 13, 7.

    Google Scholar 

  3. Ahmad, I., Hoque, M., Alam, S. S. M., Zughaibi, T. A., & Tabrez, S. (2023). Curcumin and Plumbagin Synergistically Target the PI3K/Akt/mTOR Pathway: A Prospective Role in Cancer Treatment. International Journal of Molecular Sciences, 24(7), 6651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hanahan, D., & Coussens, L. M. (2012). Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell, 21(3), 309–322.

    Article  CAS  PubMed  Google Scholar 

  5. Ebos, J. M., & Kerbel, R. S. (2011). Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nature reviews Clinical oncology, 8(4), 210–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Segovia-Mendoza, M., & Morales-Montor, J. (2019). Immune Tumor Microenvironment in Breast Cancer and the Participation of Estrogen and Its Receptors in Cancer Physiopathology. Frontiers in immunology, 10, 348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Anderson, N. M., & Simon, M. C. (2020). The tumor microenvironment. Current Biology, 30(16), R921–r5.

    Article  CAS  PubMed  Google Scholar 

  8. Peña-Romero, A. C., & Orenes-Piñero, E. (2022). Dual Effect of Immune Cells within Tumour Microenvironment: Pro- and Anti-Tumour Effects and Their Triggers. Cancers, 14, 7.

    Article  Google Scholar 

  9. Ma, Y., Shurin, G. V., Peiyuan, Z., & Shurin, M. R. (2013). Dendritic cells in the cancer microenvironment. Journal of Cancer, 4(1), 36–44.

    Article  CAS  PubMed  Google Scholar 

  10. Balkwill, F. R., Capasso, M., & Hagemann, T. (2012). The tumor microenvironment at a glance. Journal of cell science, 125(Pt 23), 5591–5596.

    Article  CAS  PubMed  Google Scholar 

  11. Barzegari, A., Saeedi, N., Zarredar, H., Barar, J., & Omidi, Y. (2014). The search for a promising cell factory system for production of edible vaccine. Human Vaccines & Immunotherapeutics, 10(8), 2497–2502.

    Article  CAS  Google Scholar 

  12. de Looff, M., de Jong, S., & Kruyt, F. A. E. (2019). Multiple Interactions Between Cancer Cells and the Tumor Microenvironment Modulate TRAIL Signaling: Implications for TRAIL Receptor Targeted Therapy. Frontiers in immunology, 10, 1530.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ma, C., Luo, H., Cao, J., Zheng, X., Zhang, J., & Zhang, Y., et al. (2020). Identification of a Novel Tumor Microenvironment-Associated Eight-Gene Signature for Prognosis Prediction in Lung Adenocarcinoma. Frontiers in molecular biosciences, 7, 571641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xiao, B., Peng, J., Wang, Y., Deng, Y., Ou, Q., & Wu, X., et al. (2020). Prognostic value of tumor infiltrating lymphocytes combined with PD-L1 expression for patients with solitary colorectal cancer liver metastasis. Annals of translational medicine, 8(19), 1221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maimela, N. R., Liu, S., & Zhang, Y. (2019). Fates of CD8+ T cells in Tumor Microenvironment. Computational and structural biotechnology journal, 17, 1–13.

    Article  CAS  PubMed  Google Scholar 

  16. Ohue, Y., & Nishikawa, H. (2019). Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer science, 110(7), 2080–2089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fridman, W. H., Meylan, M., Petitprez, F., Sun, C. M., Italiano, A., & Sautès-Fridman, C. (2022). B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. Nature reviews Clinical oncology, 19(7), 441–457.

    Article  CAS  PubMed  Google Scholar 

  18. Boutilier, A. J., & Elsawa, S. F. (2021). Macrophage Polarization States in the Tumor Microenvironment. International Journal of Molecular Science, 22, 13.

    Article  Google Scholar 

  19. Poh, A. R., & Ernst, M. (2018). Targeting Macrophages in Cancer: From Bench to Bedside. Frontiers in Oncology, 8, 49.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Masucci, M. T., Minopoli, M., & Carriero, M. V. (2019). Tumor Associated Neutrophils. Their Role in Tumorigenesis, Metastasis, Prognosis and Therapy. Frontiers in Oncology, 9, 1146.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tabrez, S., Khan, A. U., Mirza, A. A., Suhail, M., Jabir, N. R., & Zughaibi, T. A., et al. (2022). Biosynthesis of copper oxide nanoparticles and its therapeutic efficacy against colon cancer. Nanotechnology Reviews, 11(1), 1322–1331.

    Article  CAS  Google Scholar 

  22. Prete, A. D., Salvi, V., Soriani, A., Laffranchi, M., Sozio, F. & Bosisio, D. et al. (2023). Dendritic cell subsets in cancer immunity and tumor antigen sensing. Cellular & molecular immunology, 20(5), 432–447.

    Article  Google Scholar 

  23. Binnewies, M., Roberts, E. W., Kersten, K., Chan, V., Fearon, D.F. & Merad, M. (2018). Understanding the tumor immune microenvironment (TIME) for effective therapy. Nature Medicine, 24(5), 541–550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu, Y. R., & Ho, P. C. (2019). Sculpting tumor microenvironment with immune system: from immunometabolism to immunoediting. Clinical and experimental immunology, 197(2), 153–160.

    Article  CAS  PubMed  Google Scholar 

  25. Quail, D. F., & Joyce, J. A. (2013). Microenvironmental regulation of tumor progression and metastasis. Nature medicine, 19(11), 1423–1437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kitamura, T., Qian, B. Z., & Pollard, J. W. (2015). Immune cell promotion of metastasis. Nature reviews Immunology, 15(2), 73–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chaudhary, B., & Elkord, E. (2016). Regulatory T Cells in the Tumor Microenvironment and Cancer Progression: Role and Therapeutic Targeting. Vaccines., 4, 3.

    Article  Google Scholar 

  28. Laviron, M., & Boissonnas, A. (2019). Ontogeny of Tumor-Associated Macrophages. Frontiers in immunology, 10, 1799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Allavena, P., Sica, A., Solinas, G., Porta, C., & Mantovani, A. (2008). The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Critical reviews in oncology/hematology, 66(1), 1–9.

    Article  PubMed  Google Scholar 

  30. Gowd, V., Ahmad, A., Tarique, M., Suhail, M., Zughaibi, T. A., & Tabrez, S., et al. (2022). Advancement of cancer immunotherapy using nanoparticles-based nanomedicine. Seminars in cancer biology, 86(Pt 2), 624–644.

    Article  CAS  PubMed  Google Scholar 

  31. Capece, D., Fischietti, M., Verzella, D., Gaggiano, A., Cicciarelli, G., & Tessitore, A., et al. (2013). The inflammatory microenvironment in hepatocellular carcinoma: a pivotal role for tumor-associated macrophages. BioMed research international, 2013, 187204.

    Article  PubMed  Google Scholar 

  32. Wang, J., Li, D., Cang, H., & Guo, B. (2019). Crosstalk between cancer and immune cells: Role of tumor-associated macrophages in the tumor microenvironment. Cancer medicine, 8(10), 4709–4721.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Xu, L., Zou, C., Zhang, S., Chu, T. S. M., Zhang, Y., & Chen, W., et al. (2022). Reshaping the systemic tumor immune environment (STIE) and tumor immune microenvironment (TIME) to enhance immunotherapy efficacy in solid tumors. Journal of hematology & oncology, 15(1), 1–30.

    Article  Google Scholar 

  34. Kim, H. J., Ji, Y. R., & Lee, Y. M. (2022). Crosstalk between angiogenesis and immune regulation in the tumor microenvironment. Archives of Pharmacal Research, 45(6), 401–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Groner, B., & von Manstein, V. (2017). Jak Stat signaling and cancer: Opportunities, benefits and side effects of targeted inhibition. Molecular and cellular endocrinology, 451, 1–14.

    Article  CAS  PubMed  Google Scholar 

  36. Mimura, K., Teh, J. L., Okayama, H., Shiraishi, K., Kua, L. F., & Koh, V., et al. (2018). PD-L1 expression is mainly regulated by interferon gamma associated with JAK-STAT pathway in gastric cancer. Cancer science, 109(1), 43–53.

    Article  CAS  PubMed  Google Scholar 

  37. Abaza, A., Idris, F. S., Shaikh, H. A., Vahora, I., Moparthi, K. P., & Al Rushaidi, M. T., et al. (2023). Programmed Cell Death Protein 1 (PD-1) and Programmed Cell Death Ligand 1 (PD-L1) Immunotherapy: A Promising Breakthrough in Cancer Therapeutics. Cureus., 15, 9.

    Google Scholar 

  38. Yenyuwadee, S., Aliazis, K., Wang, Q., Christofides, A., Shah, R. & Patsoukis, N, et al. (2022). Immune cellular components and signaling pathways in the tumor microenvironment. Seminars in cancer biology, 86(2), 187–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Han, Y.-L., Luo, D., Habaxi, K., Tayierjiang, J., Zhao, W., & Wang, W., et al. (2022). COL5A2 Inhibits the TGF-β and Wnt/β-Catenin signaling pathways to inhibit the invasion and metastasis of osteosarcoma. Frontiers in Oncology, 12, 813809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim, H. R., Park, H. J., Son, J., Lee, J. G., Chung, K. Y., & Cho, N. H., et al. (2019). Tumor microenvironment dictates regulatory T cell phenotype: Upregulated immune checkpoints reinforce suppressive function. Journal for immunotherapy of cancer, 7(1), 339.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Leivonen, S. K., Pollari, M., Brück, O., Pellinen, T., Autio, M., & Karjalainen-Lindsberg, M. L., et al. (2019). T-cell inflamed tumor microenvironment predicts favorable prognosis in primary testicular lymphoma. Haematologica, 104(2), 338–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shanehbandi, D., Zarredar, H., Asadi, M., Zafari, V., Esmaeili, S., & Seyedrezazadeh, E., et al. (2021). Anticancer impacts of Terminalia catappa extract on SW480 colorectal neoplasm cell line. Journal of Gastrointestinal Cancer, 52(1), 99–105.

    Article  CAS  PubMed  Google Scholar 

  43. Noushmehr, H., Weisenberger, D. J., Diefes, K., Phillips, H. S., Pujara, K., & Berman, B. P., et al. (2010). Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer cell, 17(5), 510–522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dang, L., White, D. W., Gross, S., Bennett, B. D., Bittinger, M. A., & Driggers, E. M., et al. (2009). Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature, 462(7274), 739–744.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  45. Turcan, S., Rohle, D., Goenka, A., Walsh, L. A., Fang, F., & Yilmaz, E., et al. (2012). IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature, 483(7390), 479–483.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  46. Kong, L. Y., Wu, A. S., Doucette, T., Wei, J., Priebe, W., & Fuller, G. N., et al. (2010). Intratumoral mediated immunosuppression is prognostic in genetically engineered murine models of glioma and correlates to immunotherapeutic responses. Clinical cancer research: an official journal of the American Association for Cancer Research, 16(23), 5722–5733.

    Article  CAS  PubMed  Google Scholar 

  47. Ceccarelli, M., Barthel, F. P., Malta, T. M., Sabedot, T. S., Salama, S. R., & Murray, B. A., et al. (2016). Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma. Cell, 164(3), 550–563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Amankulor, N. M., Kim, Y., Arora, S., Kargl, J., Szulzewsky, F., & Hanke, M., et al. (2017). Mutant IDH1 regulates the tumor-associated immune system in gliomas. Genes & development, 31(8), 774–786.

    Article  CAS  Google Scholar 

  49. Nazam, N., Jabir, N. R., Ahmad, I., Alharthy, S. A., Khan, M. S., & Ayub, R., et al. (2023). Phenolic Acids-Mediated Regulation of Molecular Targets in Ovarian Cancer: Current Understanding and Future Perspectives. Pharmaceuticals (Basel, Switzerland), 16, 2.

    Google Scholar 

  50. Alafaleq, N. O., Alomari, A., Khan, M. S., Shaik, G. M., Hussain, A., & Ahmed, F., et al. (2022). Anticancer potential of gold nanoparticles (AuNPs) using a battery of in vitro tests. Nanotechnology Reviews, 11(1), 3292–3304.

    Article  CAS  Google Scholar 

  51. Peng, W., Chen, J. Q., Liu, C., Malu, S., Creasy, C., & Tetzlaff, M. T., et al. (2016). Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy. Cancer discovery, 6(2), 202–216.

    Article  CAS  PubMed  Google Scholar 

  52. Miao, D., Margolis, C. A., Gao, W., Voss, M. H., Li, W., & Martini, D. J, et al. (2018). Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science, 359(6377), 801–806.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  53. Zhang, S., Iyer, S., Ran, H., Dolgalev, I., Gu, S., & Wei, W, et al. (2021). Genetically Defined, Syngeneic Organoid Platform for Developing Combination Therapies for Ovarian Cancer. Cancer discovery, 11(2), 362–383.

    Article  CAS  PubMed  Google Scholar 

  54. Wang, G., Lu, X., Dey, P., Deng, P., Wu, C. C., & Jiang, S., et al. (2016). Targeting YAP-Dependent MDSC Infiltration Impairs Tumor Progression. Cancer discovery, 6(1), 80–95.

    Article  PubMed  Google Scholar 

  55. Kapur, P., Peña-Llopis, S., Christie, A., Zhrebker, L., Pavía-Jiménez, A., & Rathmell, W. K., et al. (2013). Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: a retrospective analysis with independent validation. The Lancet Oncology, 14(2), 159–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Simiczyjew, A., Dratkiewicz, E., Mazurkiewicz, J., Ziętek, M., Matkowski, R. & Nowak, D. (2020). The Influence of Tumor Microenvironment on Immune Escape of Melanoma. International Journal of Molecular Sciences, 21(21), 8359.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Fauriat, C., Long, E. O., Ljunggren, H. G., & Bryceson, Y. T. (2010). Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood., 115(11), 2167–2176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zarredar, H., Farajnia, S., Ansarin, K., Baradaran, B., Aria, M., & Asadi, M. (2019). Synergistic effect of novel EGFR inhibitor AZD8931 and p38α siRNA in lung adenocarcinoma cancer cells. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 19(5), 638–644.

    CAS  Google Scholar 

  59. Thorsson, V., Gibbs, D. L., Brown, S. D., Wolf, D., Bortone, D. S., & Ou Yang, T. H., et al. (2018). The Immune Landscape of Cancer. Immunity., 48(4), 812–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lambrecht, B. N., & Hammad, H. (2015). The immunology of asthma. Nature Immunology, 16(1), 45–56.

    Article  CAS  PubMed  Google Scholar 

  61. Izumi, H., Yamasaki, A., Takeda, K., Kodani, M., Touge, H., & Tanaka, N., et al. (2018). Acute-phase reaction induced by zoledronate and its effect on prognosis of patients with advanced non-small cell lung cancer. Lung Cancer, 122, 200–205.

    Article  PubMed  Google Scholar 

  62. Li, J., & Stanger, B. Z. (2019). The tumor as organizer model. Science, 363(6431), 1038–1039.

    Article  CAS  PubMed  ADS  Google Scholar 

  63. Wellenstein, M. D., & de Visser, K. E. (2018). Cancer-Cell-Intrinsic Mechanisms Shaping the Tumor Immune Landscape. Immunity, 48(3), 399–416.

    Article  CAS  PubMed  Google Scholar 

  64. Drakes, M. L., & Stiff, P. J. (2018). Regulation of Ovarian Cancer Prognosis by Immune Cells in the Tumor Microenvironment. Cancers, 10, 9.

    Article  Google Scholar 

  65. Ruffell, B., & Coussens, L. M. (2015). Macrophages and therapeutic resistance in cancer. Cancer cell, 27(4), 462–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Suzuki, H., Aoki, K., Chiba, K., Sato, Y., Shiozawa, Y., & Shiraishi, Y., et al. (2015). Mutational landscape and clonal architecture in grade II and III gliomas. Nature genetics, 47(5), 458–468.

    Article  CAS  PubMed  Google Scholar 

  67. Eckel-Passow, J. E., Lachance, D. H., Molinaro, A. M., Walsh, K. M., Decker, P. A., & Sicotte, H., et al. (2015). Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors. The. New England journal of medicine, 372(26), 2499–2508.

    Article  CAS  PubMed  Google Scholar 

  68. Rodriguez, G. M., Galpin, K. J. C., McCloskey, C. W. & Vanderhyden, B. C. (2018). The Tumor Microenvironment of Epithelial Ovarian Cancer and Its Influence on Response to Immunotherapy. Cancers, 10(8), 242.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Färkkilä, A., Gulhan, D. C., Casado, J., Jacobson, C. A., Nguyen, H. & Kochupurakkal, B. et al. (2020). Immunogenomic profiling determines responses to combined PARP and PD-1 inhibition in ovarian cancer. Nature Communications, 11(1), 1459

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  70. Curiel, T. J., Coukos, G., Zou, L., Alvarez, X., Cheng, P., & Mottram, P., et al. (2004). Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Medicine, 10(9), 942–949.

    Article  CAS  PubMed  Google Scholar 

  71. Zhang, L., Conejo-Garcia, J. R., Katsaros, D., Gimotty, P. A., Massobrio, M., & Regnani, G., et al. (2003). Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. The New England journal of medicine, 348(3), 203–213.

    Article  CAS  PubMed  Google Scholar 

  72. Bronger, H., Singer, J., Windmüller, C., Reuning, U., Zech, D., & Delbridge, C., et al. (2016). CXCL9 and CXCL10 predict survival and are regulated by cyclooxygenase inhibition in advanced serous ovarian cancer. British journal of cancer, 115(5), 553–563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nagarsheth, N., Wicha, M. S., & Zou, W. (2017). Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nature Reviews Immunology, 17(9), 559–572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dangaj, D., Bruand, M., Grimm, A. J., Ronet, C., Barras, D., & Duttagupta, P. A., et al. (2019). Cooperation between Constitutive and Inducible Chemokines Enables T Cell Engraftment and Immune Attack in Solid Tumors. Cancer cell, 35(6), 885–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Strickland, K. C., Howitt, B. E., Shukla, S. A., Rodig, S., Ritterhouse, L. L., & Liu, J. F., et al. (2016). Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget, 7(12), 13587–13598.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Clarke, B., Tinker, A. V., Lee, C. H., Subramanian, S., van de Rijn, M., & Turbin, D., et al. (2009). Intraepithelial T cells and prognosis in ovarian carcinoma: novel associations with stage, tumor type, and BRCA1 loss. Modern pathology: an official journal of the United States and Canadian Academy of Pathology, Inc, 22(3), 393–402.

    Article  CAS  PubMed  Google Scholar 

  77. Liu, T., Xia, Q., Zhang, H., Wang, Z., Yang, W., & Gu, X., et al. (2020). CCL5-dependent mast cell infiltration into the tumor microenvironment in clear cell renal cell carcinoma patients. Aging, 12(21), 21809–21836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Capaci, V., Mantovani, F., & Sal, G. D. (2020). A mutant p53/Hif1α/miR-30d axis reprograms the secretory pathway promoting the release of a prometastatic secretome. Cell stress, 4(11), 261–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yin, W., Jiang, X., Tan, J., Xin, Z., Zhou, Q., & Zhan, C., et al. (2020). Development and Validation of a Tumor Mutation Burden-Related Immune Prognostic Model for Lower-Grade Glioma. Frontiers in oncology, 10, 1409.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Rovira-Clavé, X., Angulo-Ibáñez, M., Noguer, O., Espel, E., & Reina, M. (2012). Syndecan-2 can promote clearance of T-cell receptor/CD3 from the cell surface. Immunology, 137(3), 214–225.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bastos, P., Gomes, T., & Ribeiro, L. (2017). Catechol-O-Methyltransferase (COMT): An Update on Its Role in Cancer, Neurological and Cardiovascular Diseases. Reviews of Physiology, Biochemistry and Pharmacology, 173, 1–39.

    Article  CAS  PubMed  Google Scholar 

  82. Ahmed, M. E., & Falasiri, S. (2020). The Immune Microenvironment in Penile Cancer and Rationale for. Immunotherapy, 9, 10.

    Google Scholar 

  83. Nechama, M., Kwon, J., Wei, S., Kyi, A. T., Welner, R. S., & Ben-Dov, I. Z., et al. (2018). The IL-33-PIN1-IRAK-M axis is critical for type 2 immunity in IL-33-induced allergic airway inflammation. Nature communications, 9(1), 1603.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  84. Ohta, A., Kini, R., Ohta, A., Subramanian, M., Madasu, M., & Sitkovsky, M. (2012). The development and immunosuppressive functions of CD4(+) CD25(+) FoxP3(+) regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway. Frontiers in immunology, 3, 190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yang, W., Chen, N., Li, L., Chen, X., Liu, X., & Zhang, Y., et al. (2020). Favorable Immune Microenvironment in Patients with EGFR and MAPK Co-Mutations. Lung Cancer (Auckland, NZ), 11, 59–71.

    Google Scholar 

  86. Ryzhov, S., Novitskiy, S. V., Goldstein, A. E., Biktasova, A., Blackburn, M. R., & Biaggioni, I., et al. (2011). Adenosinergic regulation of the expansion and immunosuppressive activity of CD11b+Gr1+ cells. Journal of immunology (Baltimore, Md: 1950), 187(11), 6120–6129.

    Article  CAS  PubMed  Google Scholar 

  87. Ouyang, L., Zhang, K., Chen, J., Wang, J. & Huang, H. (2018). Roles of platelet-derived growth factor in vascular calcification. Journal of Cellular Physiology, 233(4), 2804–2814.

    Article  CAS  PubMed  Google Scholar 

  88. Wang, X., Teng, F., Kong, L., & Yu, J. (2016). PD-L1 expression in human cancers and its association with clinical outcomes. Onco Targets & Therapy, 9, 5023–5039.

    Article  CAS  Google Scholar 

  89. Evrard, D., Hourseau, M., Couvelard, A., Paradis, V., Gauthier, H. & Raymond, E, et al. (2020). PD-L1 expression in the microenvironment and the response to checkpoint inhibitors in head and neck squamous cell carcinoma. Oncoimmunology, 9(1), 1844403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhao, Q., Chen, Y. X., Wu, Q. N., Zhang, C., Liu, M., & Wang, Y. N., et al. (2020). Systematic analysis of the transcriptome in small-cell carcinoma of the oesophagus reveals its immune microenvironment. Clinical & translational immunology, 9(10), e1173.

    Article  CAS  Google Scholar 

  91. Shi, A. P., Tang, X. Y., Xiong, Y. L., Zheng, K. F., Liu, Y. J., & Shi, X. G., et al. (2021). Immune Checkpoint LAG3 and Its Ligand FGL1 in Cancer. Frontiers in immunology, 12, 785091.

    Article  CAS  PubMed  Google Scholar 

  92. Wang, J., Sanmamed, M. F., Datar, I., Su, T. T., Ji, L., & Sun, J., et al. (2019). Fibrinogen-like Protein 1 Is a Major Immune Inhibitory Ligand of LAG-3. Cell, 176(1-2), 334–347.

    Article  CAS  PubMed  Google Scholar 

  93. Guo, M., Yuan, F., Qi, F., Sun, J., Rao, Q., & Zhao, Z., et al. (2020). Expression and clinical significance of LAG-3, FGL1, PD-L1 and CD8(+)T cells in hepatocellular carcinoma using multiplex quantitative analysis. Journal of translational medicine, 18(1), 306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Song, L., Ye, W., Cui, Y., Lu, J., Zhang, Y., & Ding, N., et al. (2017). Ecto-5’-nucleotidase (CD73) is a biomarker for clear cell renal carcinoma stem-like cells. Oncotarget., 8(19), 31977–31992.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Chambers, A. M., Wang, J., Lupo, K. B., Yu, H., Atallah Lanman, N. M., & Matosevic, S. (2018). Adenosinergic Signaling Alters Natural Killer Cell Functional Responses. Frontiers in immunology, 9, 2533.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Arab, S., & Hadjati, J. (2019). Adenosine Blockage in Tumor Microenvironment and Improvement of Cancer Immunotherapy. Immune network, 19(4), e23.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Takayama, H., Trenn, G., & Sitkovsky, M. V. (1988). Locus of inhibitory action of cAMP-dependent protein kinase in the antigen receptor-triggered cytotoxic T lymphocyte activation pathway. The. Journal of Biological Chemistry, 263(5), 2330–2336.

    Article  CAS  PubMed  Google Scholar 

  98. Tripathi, A., Lin, E., Xie, W., Flaifel, A., Steinharter, J. A., & Gatof, E. N. S., et al. (2020). Prognostic significance and immune correlates of CD73 expression in renal cell carcinoma. Journal for immunotherapy of cancer, 8(2), e001467.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Rafii, S., Ghouzlani, A., Naji, O., Ait Ssi, S., Kandoussi, S., & Lakhdar, A., et al. (2023). A(2A)R as a Prognostic Marker and a Potential Immunotherapy Target in Human Glioma. International Journal of Molecular Science, 24, 7.

    Article  Google Scholar 

  100. Ernens, I., Bousquenaud, M., Lenoir, B., Devaux, Y., & Wagner, D. R. (2015). Adenosine stimulates angiogenesis by up-regulating production of thrombospondin-1 by macrophages. Journal of leukocyte biology, 97(1), 9–18.

    Article  PubMed  Google Scholar 

  101. Jin, M., Cao, W., Chen, B., Xiong, M., & Cao, G. (2022). Tumor-Derived Lactate Creates a Favorable Niche for Tumor via Supplying Energy Source for Tumor and Modulating the Tumor Microenvironment. Frontiers in cell and developmental biology, 10, 808859.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Romero-Garcia, S., Moreno-Altamirano, M. M., Prado-Garcia, H., & Sánchez-García, F. J. (2016). Lactate Contribution to the Tumor Microenvironment: Mechanisms, Effects on Immune Cells and Therapeutic Relevance. Frontiers in immunology, 7, 52.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Bola, B. M., Chadwick, A. L., Michopoulos, F., Blount, K. G., Telfer, B. A., & Williams, K. J., et al. (2014). Inhibition of monocarboxylate transporter-1 (MCT1) by AZD3965 enhances radiosensitivity by reducing lactate transport. Molecular cancer therapeutics, 13(12), 2805–2816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Li, B., Yang, Q., Li, Z., Xu, Z., Sun, S., & Wu, Q., et al. (2020). Expression of Monocarboxylate Transporter 1 in Immunosuppressive Macrophages Is Associated With the Poor Prognosis in Breast Cancer. Frontiers in Oncology, 10, 574787.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Tiainen, S., Tumelius, R., Rilla, K., Hämäläinen, K., Tammi, M., & Tammi, R., et al. (2015). High numbers of macrophages, especially M2-like (CD163-positive), correlate with hyaluronan accumulation and poor outcome in breast cancer. Histopathology. 66(6), 873–883.

    Article  PubMed  Google Scholar 

  106. Kaleem, M., Dalhat, M. H., Azmi, L., Asar, T. O., Ahmad, W., & Alghanmi, M., et al. (2022). An Insight into Molecular Targets of Breast Cancer Brain Metastasis. International Journal of Molecular Sciences, 23(19), 11687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Science, Tabriz, Iran.

Author information

Authors and Affiliations

Authors

Contributions

Study Design: A.C., D.S.; Data Collection: M.A., H.Z.; Statistical Analysis: M.A., V.Z.; Data Interpretation: H.Z., Z.S.; Manuscript Preparation: Z.S., H.S.; Literature Search: A.C., D.S.

Corresponding authors

Correspondence to Ayse Caner or Dariush Shanehbandi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadi, M., Zarredar, H., Zafari, V. et al. Immune Features of Tumor Microenvironment: A Genetic Spotlight. Cell Biochem Biophys 82, 107–118 (2024). https://doi.org/10.1007/s12013-023-01192-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-023-01192-7

Keywords

Navigation