Skip to main content

Advertisement

Log in

Matrix Stiffness Regulated Endoplasmic Reticulum Stress-mediated Apoptosis of Osteosarcoma Cell through Ras Signal Cascades

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The modulating effects of matrix stiffness on spreading and apoptosis of tumor cells have been well recognized. Nevertheless, the detail road map leading to the apoptosis and the underlying mechanisms governing the cell apoptosis have remained to be elucidated. To this aim, we provided a tunable elastic hydrogel matrix that promoted cell adhesion by modifying the surface of polyacrylamide with polydopamine, with stiffness value of 1, 10, 30, and 250 kPa, respectively. While the cell spreading increased and the apoptosis decreased with the matrix stiffness, such modulating effect of matrix on cell spreading exhibited different time evolvement behaviors as a function of stiffness, which likely led to surprisingly similar apoptosis rates for the 30 kPa and 250 kPa samples. Matrix stiffness mediated the spreading and apoptosis of MG-63 cells by regulating cell adhesion to matrix and in particular cytoskeletal organization, which was dependent on Ras, Rap1 and PI3K-Akt signaling pathways and finally led to the apoptosis of cancer cells dominated by endoplasmic reticulum stress pathway. Our results provided an insight into the regulation of tumor cell fate by the mechanical clues of ECM, which would have implication for future cancer research and the design of novel anticancer materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. All graphs corresponding to the datasets used in this study are included in this published article.

References

  1. Pickup, M. W., Mouw, J. K., & Weaver, V. M. (2014). The extracellular matrix modulates the hallmarks of cancer. EMBO Reports, 15, 1243–1253. https://doi.org/10.15252/embr.201439246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu, X. Q., Chen, X. T., Liu, Z. Z., Gu, S. S., He, L. J., Wang, K. P., & Tang, R. Z. (2020). Biomimetic matrix stiffness modulates hepatocellular carcinoma malignant phenotypes and macrophage polarization through multiple modes of mechanical feedbacks. ACS Biomaterials Science & Engineering, 6, 3994–4004. https://doi.org/10.1021/acsbiomaterials.0c00669.

    Article  CAS  Google Scholar 

  3. Yang, L., Li, J. W., Zang, G. C., Song, S. J., Sun, Z. W., Li, X. Y., Li, Y. Z., Xie, Z. H., Zhang, G. Y., Gui, N., Zhu, S., Chen, T. T., Cai, Y. K., & Zhao, Y. P. (2023). Pin1/YAP pathway mediates matrix stiffness‐induced epithelial–mesenchymal transition driving cervical cancer metastasis via a non‐Hippo mechanism. Bioengineering & Translational Medicine, 8, e10375. https://doi.org/10.1002/btm2.10375.

    Article  CAS  Google Scholar 

  4. Jiang, Y. F., Zhang, H. Y., Wang, J., Liu, Y. L., Luo, T., & Hua, H. (2022). Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy. Journal of Hematology & Oncology, 15, 1–15. https://doi.org/10.1186/s13045-022-01252-0.

    Article  CAS  Google Scholar 

  5. Li, S., Bai, H. X., Chen, X. Y., Gong, S. N., Xiao, J. M., Li, D., Li, L., Jiang, Y., Li, T. T., Qin, X., Yang, H., Wu, C. H., You, F. M., & Liu, Y. Y. (2020). Soft substrate promotes osteosarcoma cell self-renewal, differentiation, and drug resistance through miR-29b and its target protein spin 1. ACS Biomaterials Science & Engineering, 6, 5588–5598. https://doi.org/10.1021/acsbiomaterials.0c00816.

    Article  CAS  Google Scholar 

  6. Chen, Y., Li, P., Peng, Y. T., Xie, X. X., Zhang, Y. X., Jiang, Y., Li, T. T., Qin, X., Li, S., Yang, H., Wu, C. H., Zheng, C., Zhu, J., You, F. M., & Liu, Y. Y. (2021). Protective autophagy attenuates soft substrate-induced apoptosis through ROS/JNK signaling pathway in breast cancer cells. Free Radical Biology and Medicine, 172, 590–603. https://doi.org/10.1016/j.freeradbiomed.2021.07.005.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, M., Xu, C., Wang, H. Z., Peng, Y. N., Li, H. O., Zhou, Y. J., Liu, S., Wang, F., Liu, L., Chang, Y., Zhao, Q., & Liu, J. (2019). Soft fibrin matrix downregulates DAB2IP to promote Nanog-dependent growth of colon tumor-repopulating cells. Cell Death & Disease, 10, 1–13. https://doi.org/10.1038/s41419-019-1309-7.

    Article  Google Scholar 

  8. Zeltz, C., Primac, I., Erusappan, P., Alam, J., Noel, A., & Gullberg, D. (2020). Cancer-associated fibroblasts in desmoplastic tumors: emerging role of integrins. Seminars in Cancer Biology, 62, 166–181. https://doi.org/10.1016/j.semcancer.2019.08.004.

    Article  CAS  PubMed  Google Scholar 

  9. Gkretsi, V., & Stylianopoulos, T. (2018). Cell adhesion and matrix stiffness: coordinating cancer cell invasion and metastasis. Frontiers in Oncology, 8, 145. https://doi.org/10.3389/fonc.2018.00145.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix stiffness directs stem cell lineage specification. Cell, 126, 677–689. https://doi.org/10.1016/j.cell.2006.06.044.

    Article  CAS  PubMed  Google Scholar 

  11. Park, J. S., Burckhardt, C. J., Lazcano, R., Solis, L. M., Isogai, T., Li, L. Q., Chen, C. S., Gao, B. N., Minna, J. D., Bachoo, R., DeBerardinis, R. J., & Danuser, G. (2020). Mechanical regulation of glycolysis via cytoskeleton architecture. Nature, 578, 621–626. https://doi.org/10.1038/s41586-020-1998-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wolf, K., te Lindert, M., Krause, M., Alexander, S., te Riet, J., Willis, A. L., Hoffman, R. M., Figdor, C. G., Weiss, S. J., & Friedl, P. (2013). Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. Journal of Cell Biology, 201, 1069–1084. https://doi.org/10.1083/jcb.201210152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chaudhuri, O., Koshy, S. T., da Cunha, C. B., Shin, J. W., Verbeke, C. S., Allison, K. H., & Mooney, D. J. (2014). Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nature Materials, 13, 970–978. https://doi.org/10.1038/NMAT4009.

    Article  CAS  PubMed  Google Scholar 

  14. Pietila, E. A., Gonzalez-Molina, J., Moyano-Galceran, L., Jamalzadeh, S., Zhang, K., Lehtinen, L., Turunen, S. P., Martins, T. A., Gultekin, O., Lamminen, T., Kaipio, K., Joneborg, U., Hynninen, J., Hietanen, S., Grenman, S., Lehtonen, R., Hautaniemi, S., Carpen, O., Carlson, J. W., & Lehti, K. (2021). Co-evolution of matrisome and adaptive adhesion dynamics drives ovarian cancer chemoresistance. Nature Communications, 12, 1–19. https://doi.org/10.1038/s41467-021-24009-8.

    Article  CAS  Google Scholar 

  15. Gonzalez-Molina, J., Kirchhof, K. M., Rathod, B., Moyano-Galceran, L., Calvo-Noriega, M., Kokaraki, G., Bjorkoy, A., Ehnman, M., Carlson, J. W., & Lehti, K. (2022). Mechanical confinement and DDR1 signalling synergise to regulate collagen-induced apoptosis in rhabdomyosarcoma cells. Advanced Science, 9, 2202552. https://doi.org/10.1002/advs.202202552.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lee, J., Ko, P., You, E., Jeong, J., Keum, S., Kim, J., Rahman, M., Lee, D. H., & Rhee, S. (2019). Shwachman-Bodian-Diamond syndrome protein desensitizes breast cancer cells to apoptosis in stiff matrices by repressing the caspase 8-mediated pathway. Animal Cells and Systems, 23, 414–421. https://doi.org/10.1080/19768354.2019.1666030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kilinc, A. N., Han, S. Y., Barrett, L. A., Anandasivam, N., & Nelson, C. M. (2021). Integrin-linked kinase tunes cell–cell and cell-matrix adhesions to regulate the switch between apoptosis and EMT downstream of TGFβ1. Molecular Biology of the Cell, 32, 402–412. https://doi.org/10.1091/mbc.E20-02-0092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yao, B. W., Niu, Y. S., Li, Y. Z., Chen, T. X., Wei, X. Y., & Liu, Q. G. (2020). High-matrix-stiffness induces promotion of hepatocellular carcinoma proliferation and suppression of apoptosis via miR-3682-3p-PHLDA1-FAS pathway. Journal of Cancer, 11, 6188. https://doi.org/10.7150/jca.45998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bottcher, R. T., Lange, A., & Fassler, R. (2009). How ILK and kindlins cooperate to orchestrate integrin signaling. Current Opinion in Cell Biology, 21, 670–675. https://doi.org/10.1016/j.ceb.2009.05.008.

    Article  CAS  PubMed  Google Scholar 

  20. Hong, S., Na, Y. S., Choi, S., Song, I. T., Kim, W. Y., & Lee, H. (2012). Non‐covalent self‐assembly and covalent polymerization co‐contribute to polydopamine formation. Advanced Functional Materials, 22, 4711–4717. https://doi.org/10.1002/adfm.201201156.

    Article  CAS  Google Scholar 

  21. Alcaraz, J., Xu, R., Mori, H., Nelson, C. M., Mroue, R., Spencer, V. A., Brownfield, D., Radisky, D. C., Bustamante, C., & Bissell, M. J. (2008). Laminin and biomimetic extracellular stiffness enhance functional differentiation in mammary epithelia. The EMBO Journal, 27, 2829–2838. https://doi.org/10.1038/emboj.2008.206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Peng, Y. T., Chen, Z. Y., Chen, Y., Li, S., Jiang, Y., Yang, H., Wu, C. H., You, F. M., Zheng, C., Zhu, J., Tan, Y. H., Qin, X., & Liu, Y. Y. (2019). ROCK isoforms differentially modulate cancer cell motility by mechanosensing the substrate stiffness. Acta Biomaterialia, 88, 86–101. https://doi.org/10.1016/j.actbio.2019.02.015.

    Article  CAS  PubMed  Google Scholar 

  23. Chiu, W. T., Wang, Y. H., Tang, M. J., & Shen, M. R. (2007). Soft substrate induces apoptosis by the disturbance of Ca2+ homeostasis in renal epithelial LLC‐PK1 cells. Journal of Cellular Physiology, 212, 401–410. https://doi.org/10.1002/jcp.21037.

    Article  CAS  PubMed  Google Scholar 

  24. Wang, Y. H., Chiu, W. T., Wang, Y. K., Wu, C. C., Chen, T. L., Teng, C. F., Chang, W. T., Chang, H. C., & Tang, M. J. (2007). Deregulation of AP-1 proteins in collagen gel-induced epithelial cell apoptosis mediated by low substratum rigidity. Journal of Biological Chemistry, 282, 752–763. https://doi.org/10.1074/jbc.M604801200.

    Article  CAS  PubMed  Google Scholar 

  25. Wang, K., Wu, F., Seo, B. R., Fischbach, C., Chen, W. S., Hsu, L., & Gourdon, D. (2017). Breast cancer cells alter the dynamics of stromal fibronectin-collagen interactions. Matrix Biology, 60, 86–95. https://doi.org/10.1016/j.matbio.2016.08.001.

    Article  CAS  PubMed  Google Scholar 

  26. Provenzano, P. P., Inman, D. R., Eliceiri, K. W., Knittel, J. G., Yan, L., Rueden, C. T., White, J. G., & Keely, P. J. (2008). Collagen density promotes mammary tumor initiation and progression. BMC Medicine, 6, 11. https://doi.org/10.1186/1741-7015-6-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Levental, K. R., Yu, H. M., Kass, L., Lakins, J. N., Egeblad, M., Erler, J. T., Fong, S. F. T., Csiszar, K., Giaccia, A., Weninger, W., Yamauchi, M., Gasser, D. L., & Weaver, V. M. (2009). Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell, 139, 891–906. https://doi.org/10.1016/j.cell.2009.10.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kisling, A., Lust, R. M., & Katwa, L. C. (2019). What is the role of peptide fragments of collagen I and IV in health and disease? Life Sciences, 228, 30–34. https://doi.org/10.1016/j.lfs.2019.04.042.

    Article  CAS  PubMed  Google Scholar 

  29. Schlaepfer, D. D., Hanks, S. K., Hunter, T., & van der Geer, P. (1994). Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature, 372, 786–791. https://doi.org/10.1038/372786a0.

    Article  CAS  PubMed  Google Scholar 

  30. Hess, F., Estrugo, D., Fischer, A., Belka, C., & Cordes, N. (2007). Integrin-linked kinase interacts with caspase-9 and-8 in an adhesion-dependent manner for promoting radiation-induced apoptosis in human leukemia cells. Oncogene, 26, 1372–1384. https://doi.org/10.1038/sj.onc.1209947.

    Article  CAS  PubMed  Google Scholar 

  31. Park, C. C., Zhang, H. J., Yao, E. S., Park, C. J., & Bissell, M. J. (2008). β1 integrin inhibition dramatically enhances radiotherapy efficacy in human breast cancer xenografts. Cancer Research, 68, 4398–4405. https://doi.org/10.1158/0008-5472.CAN-07-6390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, S., Xiong, N. Y., Peng, Y. T., Tang, K., Bai, H. X., Lv, X. Y., Jiang, Y., Qin, X., Yang, H., Wu, C. H., Zhou, P., & Liu, Y. Y. (2018). Acidic pHe regulates cytoskeletal dynamics through conformational integrin β1 activation and promotes membrane protrusion. Biochimica et Biophysica Acta-Molecular Basis of Disease., 1864, 2395–2408. https://doi.org/10.1016/j.bbadis.2018.04.019.

    Article  CAS  PubMed  Google Scholar 

  33. Marchi, S., Patergnani, S., Missiroli, S., Morciano, G., Rimessi, A., Wieckowski, M. R., Giorgi, C., & Pinton, P. (2018). Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium, 69, 62–72. https://doi.org/10.1016/j.ceca.2017.05.003.

    Article  CAS  PubMed  Google Scholar 

  34. Mactier, S., Henrich, S., Che, Y. P., Kohnke, P. L., & Christopherson, R. I. (2011). Comprehensive proteomic analysis of the effects of purine analogs on human Raji B-cell lymphoma. Journal of Proteome Research, 10, 1030–1042. https://doi.org/10.1021/pr100803b.

    Article  CAS  PubMed  Google Scholar 

  35. Feissner, R. F., Skalska, J., Gaum, W. E., & Sheu, S. S. (2009). Crosstalk signaling between mitochondrial Ca2+ and ROS. Frontiers in Bioscience-Landmark., 14, 1197. https://doi.org/10.2741/3303.

    Article  CAS  Google Scholar 

  36. Cui, C. C., Merritt, R., Fu, L. W., & Pan, Z. (2017). Targeting calcium signaling in cancer therapy. Acta Pharmaceutica Sinica B, 7, 3–17. https://doi.org/10.1016/j.apsb.2016.11.001.

    Article  PubMed  Google Scholar 

  37. Ong, M. S., Deng, S., Halim, C. E., Cai, W. P., Tan, T. Z., Huang, R. Y. J., Sethi, G., Hooi, S. C., Kumar, A. P., & Yap, C. T. (2020). Cytoskeletal proteins in cancer and intracellular stress: a therapeutic perspective. Cancers, 12, 238. https://doi.org/10.3390/cancers12010238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Urra, H., Pihan, P., & Hetz, C. (2020). The UPRosome–decoding novel biological outputs of IRE1α function. Journal of Cell Science, 133, jcs218107. https://doi.org/10.1242/jcs.218107.

    Article  CAS  PubMed  Google Scholar 

  39. Zhong, Z. Y., Huang, M. G., Lv, M. X., He, Y. F., Duan, C. Z., Zhang, L. Y., & Chen, J. X. (2017). Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway. Cancer Letters, 403, 305–317. https://doi.org/10.1016/j.canlet.2017.06.027.

    Article  CAS  PubMed  Google Scholar 

  40. Byers, L. A., Wang, J., Nilsson, M. B., Fujimoto, J., Saintigny, P., Yordy, J., Giri, U., Peyton, M., Fan, Y. H., Diao, L. X., Masrorpour, F., Shen, L., Liu, W. B., Duchemann, B., Tumula, P., Bhardwaj, V., Welsh, J., Weber, S., Glisson, B. S., Kalhor, N., Wistuba, I. I., Girard, L., Lippman, S. M., Mills, G. B., Coombes, K. R., Weinstein, J. N., Minna, J. D., & Heymach, J. V. (2012). Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1. Cancer Discovery, 2, 798–811. https://doi.org/10.1158/2159-8290.CD-12-0112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dimri, M., & Satyanarayana, A. (2020). Molecular signaling pathways and therapeutic targets in hepatocellular carcinoma. Cancers, 12, 491. https://doi.org/10.3390/cancers12020491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schlaepfer, D. D., Broome, M. A., & Hunter, T. (1997). Fibronectin-stimulated signaling from a focal adhesion kinase-c-Src complex: involvement of the Grb2, p130cas, and Nck adaptor proteins. Molecular and Cellular Biology, 17, 1702–1713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kocgozlu, L., Lavalle, P., Koenig, G., Senger, B., Haikel, Y., Schaaf, P., Voegel, J. C., Tenenbaum, H., & Vautier, D. (2010). Selective and uncoupled role of substrate elasticity in the regulation of replication and transcription in epithelial cells. Journal of cell science, 123, 29–39. https://doi.org/10.1242/jcs.053520.

    Article  CAS  PubMed  Google Scholar 

  44. Panciera, T., Citron, A., Di Biagio, D., Battilana, G., Gandin, A., Giulitti, S., Forcato, M., Bicciato, S., Panzetta, V., Fusco, S., Azzolin, L., Totaro, A., Dei Tos, A. P., Fassan, M., Vindigni, V., Bassetto, F., Rosato, A., Brusatin, G., Cordenonsi, M., & Piccolo, S. (2020). Reprogramming normal cells into tumour precursors requires ECM stiffness and oncogene-mediated changes of cell mechanical properties. Nature materials, 19, 797–806. https://doi.org/10.1038/s41563-020-0615-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Young, H. S., McGowan, L. M., Jepson, K. A., & Adams, J. C. (2020). Impairment of cell adhesion and migration by inhibition of protein disulphide isomerases in three breast cancer cell lines. Bioscience Reports, 40, BSR2019327. https://doi.org/10.1042/BSR20193271.

    Article  Google Scholar 

  46. Feng, Y. X., Sokol, E. S., Del Vecchio, C. A., Sanduja, S., Claessen, J. H. L., Proia, T. A., Jin, D. X., Reinhardt, F., Ploegh, H. L., Wang, Q., & Gupta, P. B. (2014). Epithelial-to-mesenchymal transition activates PERK–eIF2α and sensitizes cells to endoplasmic reticulum stress. Cancer Discovery, 4, 702–715.

    Article  CAS  PubMed  Google Scholar 

  47. Suo, M. F., Lin, Z. C., Guo, D. F., & Zhang, A. R. (2022). Hsa_circ_0056686, derived from cancer-associated fibroblasts, promotes cell proliferation and suppresses apoptosis in uterine leiomyoma through inhibiting endoplasmic reticulum stress. Plos One, 17, e026637. https://doi.org/10.1371/journal.pone.0266374.

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to all the members who contributed to this study, including Jing He, Fang Wu, Xuedong Shu, Yao Wang, Junwei Zhang, Yue Yin, Jing Guo, Nihui Zhang, Tao Gao, Jun Shu, Guangpeng Zhang, Tingting Xu and others.

Funding

This works was supported by the National Natural Science Foundation of China (No. 31971257 and 32271397), and Natural Science Foundation of Sichuan Province (No. 2022NSFSC0360).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by H.D. The main manuscript text was written by H.D. and all authors commented on previous versions of the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jing He.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, H., Shu, X., Wang, Y. et al. Matrix Stiffness Regulated Endoplasmic Reticulum Stress-mediated Apoptosis of Osteosarcoma Cell through Ras Signal Cascades. Cell Biochem Biophys 81, 839–850 (2023). https://doi.org/10.1007/s12013-023-01184-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-023-01184-7

Keywords

Navigation