Skip to main content
Log in

Circular RNA circ-SLC7A5 Functions as a Competing Endogenous RNA to Impact Cell Biological Behaviors in Esophageal Squamous Cell Carcinoma (ESCC)

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Background

Circular RNAs (circRNAs) have profound effects on establishment and pathogenesis of esophageal squamous cell carcinoma (ESCC). Here, we defined whether circRNA solute carrier family 7 member 5 (circ-SLC7A5, also called hsa_circ_0040796) is causally involved in the pathogenesis of ESCC.

Methods

Circ-SLC7A5, microRNA (miR)-874-3p and coronin-1C (CORO1C) expression levels were gauged by qRT-PCR or immunoblotting. Cell functional phenotypes were tested by colony formation, EdU, flow cytometry, transwell and wound-healing assays. RNA immunoprecipitation (RIP) and dual-luciferase reporter assays were applied to ascertained circ-SLC7A5/miR-874-3p and miR-874-3p/CORO1C relationships.

Results

Circ-SLC7A5 was highly expressed in human ESCC. Circ-SLC7A5 depletion impaired cell growth, migration, invasiveness, and promoted apoptosis. Circ-SLC7A5 knockdown diminished ESCC cell tumorigenicity. Mechanistically, circ-SLC7A5 contained a binding site for miR-874-3p. Also, miR-874-3p was responsible for circ-SLC7A5’s function in ESCC cells. CORO1C was a direct miR-874-3p target. Circ-SLC7A5 functioned as a competing endogenous RNA (ceRNA) to control CORO1C by competing for shared miR-874-3p. Furthermore, CORO1C knockdown phenocopied miR-874-3p overexpression in impacting the biological behaviors of ESCC cells.

Conclusion

These findings identify circ-SLC7A5 as a crucial modulator of ESCC cells and establish a novel circ-SLC7A5/miR-874-3p/CORO1C ceRNA network in ESCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinical, 68, 394–424.

    Google Scholar 

  2. Arnold, M., Soerjomataram, I., Ferlay, J., & Forman, D. (2015). Global incidence of oesophageal cancer by histological subtype in 2012. Gut, 64, 381–387.

    Article  PubMed  Google Scholar 

  3. Reichenbach, Z. W., Murray, M. G., Saxena, R., Farkas, D., Karassik, E. G., Klochkova, A., Patel, K., Tice, C., Hall, T. M., & Gang, J., et al. (2019). Clinical and translational advances in esophageal squamous cell carcinoma. Advances in Cancer Research, 144, 95–135.

    Article  CAS  PubMed  Google Scholar 

  4. Feng, Q., Zhang, H., Yao, D., Chen, W. D. & & Wang, Y. D. (2019). Emerging role of non-coding RNAs in esophageal squamous cell carcinoma. International Journal of Molecular Sciences, 21, 258

    Article  PubMed  PubMed Central  Google Scholar 

  5. Islam, F., Gopalan, V., & Lam, A. K. (2020). Roles of MicroRNAs in esophageal squamous cell carcinoma pathogenesis. Methods in Molecular Biology, 2129, 241–257.

    Article  CAS  PubMed  Google Scholar 

  6. Patop, I. L., Wüst, S., & Kadener, S. (2019). Past, present, and future of circRNAs. The EMBO Journal, 38, e100836.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Iwakawa, H. O., & Tomari, Y. (2015). The functions of MicroRNAs: mRNA decay and translational repression. Trends in Cell Biology, 25, 651–665.

    Article  CAS  PubMed  Google Scholar 

  8. Tay, Y., Rinn, J., & Pandolfi, P. P. (2014). The multilayered complexity of ceRNA crosstalk and competition. Nature, 505, 344–352.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  9. Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., Maier, L., Mackowiak, S. D., Gregersen, L. H., & Munschauer, M., et al. (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 495, 333–338.

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Qi, X., Zhang, D. H., Wu, N., Xiao, J. H., Wang, X., & Ma, W. (2015). ceRNA in cancer: possible functions and clinical implications. Journal of Medical Genetics, 52, 710–718.

    Article  PubMed  Google Scholar 

  11. Sun, Y., Qiu, L., Chen, J., Wang, Y., Qian, J., Huang, L., & Ma, H. (2020). Construction of circRNA-Associated ceRNA network reveals novel biomarkers for esophageal cancer. Computational and Mathematical Methods in Medicine, 2020, 7958362.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang, Z., Li, H., Li, F., Su, X., & Zhang, J. (2020). Bioinformatics-based identification of a circRNA-miRNA-mRNA axis in esophageal squamous cell carcinomas. Journal of Oncology, 2020, 8813800.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liu, Z. H., Yang, S. Z., Li, W. Y., Dong, S. Y., Zhou, S. Y., & Xu, S. (2021). CircRNA_141539 can serve as an oncogenic factor in esophageal squamous cell carcinoma by sponging miR-4469 and activating CDK3 gene. Aging (Albany NY), 13, 12179–12193.

    Article  CAS  PubMed  Google Scholar 

  14. Huang, E., Fu, J., Yu, Q., Xie, P., Yang, Z., Ji, H., Wang, L., Luo, G., Zhang, Y., & Li, K. (2020). CircRNA hsa_circ_0004771 promotes esophageal squamous cell cancer progression via miR-339-5p/CDC25A axis. Epigenomics, 12, 587–603.

    Article  PubMed  Google Scholar 

  15. Wang, Q., Liu, H., Liu, Z., Yang, L., Zhou, J., Cao, X., & Sun, H. (2020). Circ-SLC7A5, a potential prognostic circulating biomarker for detection of ESCC. Cancer GenetIcs, 240, 33–39.

    Article  CAS  PubMed  Google Scholar 

  16. Luo, A., Zhou, X., Shi, X., Zhao, Y., Men, Y., Chang, X., Chen, H., Ding, F., Li, Y., & Su, D., et al. (2019). Exosome-derived miR-339-5p mediates radiosensitivity by targeting Cdc25A in locally advanced esophageal squamous cell carcinoma. Oncogene, 38, 4990–5006.

    Article  CAS  PubMed  Google Scholar 

  17. Sun, T., An, Q., Yan, R., Li, K., Zhu, K., Dang, C., & Yuan, D. (2020). MicroRNA‑216a‑5p suppresses esophageal squamous cell carcinoma progression by targeting KIAA0101. Oncology Reports, 44, 1971–1984.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yuan, R. B., Zhang, S. H., He, Y., Zhang, X. Y., & Zhang, Y. B. (2018). MiR-874-3p is an independent prognostic factor and functions as an anti-oncomir in esophageal squamous cell carcinoma via targeting STAT3. European Review for Medical and Pharmacological Sciences, 22, 7265–7273.

    PubMed  Google Scholar 

  19. Wang, J., Tsouko, E., Jonsson, P., Bergh, J., Hartman, J., Aydogdu, E., & Williams, C. (2014). miR-206 inhibits cell migration through direct targeting of the actin-binding protein coronin 1C in triple-negative breast cancer. Molecular Oncology, 8, 1690–1702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mataki, H., Enokida, H., Chiyomaru, T., Mizuno, K., Matsushita, R., Goto, Y., Nishikawa, R., Higashimoto, I., Samukawa, T., & Nakagawa, M., et al. (2015). Downregulation of the microRNA-1/133a cluster enhances cancer cell migration and invasion in lung-squamous cell carcinoma via regulation of Coronin1C. Journal of Human Genetics, 60, 53–61.

    Article  CAS  PubMed  Google Scholar 

  21. Han, S., Ding, X., Wang, S., Xu, L., Li, W., & Sun, W. (2020). miR-133a-3p regulates hepatocellular carcinoma progression through targeting CORO1C. Cancer Management and Research, 12, 8685–8693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, Q., Dai, Z., Xia, C., Jin, L., & Chen, X. (2020). Suppression of long non-coding RNA MALAT1 inhibits survival and metastasis of esophagus cancer cells by sponging miR-1-3p/CORO1C/TPM3 axis. Molecular and Cellular Biochemistry, 470, 165–174.

    Article  CAS  PubMed  Google Scholar 

  23. Pichiorri, F., Suh, S. S., Rocci, A., De Luca, L., Taccioli, C., Santhanam, R., Zhou, W., Benson, Jr., D. M., Hofmainster, C., & Alder, H., et al. (2016). Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory Loop in multiple Myeloma development. Cancer Cell, 30, 349–351.

    Article  CAS  PubMed  Google Scholar 

  24. Mulder, D. J., Pacheco, I., Hurlbut, D. J., Mak, N., Furuta, G. T., MacLeod, R. J., & Justinich, C. J. (2009). FGF9-induced proliferative response to eosinophilic inflammation in oesophagitis. Gut, 58, 166–173.

    Article  CAS  PubMed  Google Scholar 

  25. Kristensen, L. S., Andersen, M. S., Stagsted, L. V. W., Ebbesen, K. K., Hansen, T. B., & Kjems, J. (2019). The biogenesis, biology and characterization of circular RNAs. Nature Reviews Genetics, 20, 675–691.

    Article  CAS  PubMed  Google Scholar 

  26. Jinyu, L., Shuying, W., Panchan, Z., Dan, C., Chao, C., Xingyu, Y., & Weiwei, C. (2022). Bone marrow stromal cell antigen 2(BST2) suppresses the migration and invasion of trophoblasts in preeclampsia by downregulating matrix metallopeptidase 2(MMP2). Bioengineered, 13, 13174–13187.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kim, B. N., Ahn, D. H., Kang, N., Yeo, C. D., Kim, Y. K., Lee, K. Y., Kim, T. J., Lee, S. H., Park, M. S., & Yim, H. W., et al. (2020). TGF-β induced EMT and stemness characteristics are associated with epigenetic regulation in lung cancer. Scientific Reports, 10, 10597.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. Hansen, T. B., Jensen, T. I., Clausen, B. H., Bramsen, J. B., Finsen, B., Damgaard, C. K., & Kjems, J. (2013). Natural RNA circles function as efficient microRNA sponges. Nature, 495, 384–388.

    Article  CAS  PubMed  ADS  Google Scholar 

  29. Jiang, C., Xu, D., You, Z., Xu, K., & Tian, W. (2019). Dysregulated circRNAs and ceRNA network in esophageal squamous cell carcinoma. Frontiers in Bioscience (Landmark Ed), 24, 277–290.

    Article  Google Scholar 

  30. Fan, L., Cao, Q., Liu, J., Zhang, J., & Li, B. (2019). Circular RNA profiling and its potential for esophageal squamous cell cancer diagnosis and prognosis. Molecular Cancer, 18, 16.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zheng, B., Wu, Z., Xue, S., Chen, H., Zhang, S., Zeng, T., Xu, G., Wu, W., Zheng, W., & Chen, C. (2019). hsa_circRNA_100873 upregulation is associated with increased lymphatic metastasis of esophageal squamous cell carcinoma. Oncology Letters, 18, 6836–6844.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Salmena, L., Poliseno, L., Tay, Y., Kats, L., & Pandolfi, P. P. (2011). A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell, 146, 353–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Anastasiadou, E., Jacob, L. S., & Slack, F. J. (2018). Non-coding RNA networks in cancer. Nature Reviews Cancer, 18, 5–18.

    Article  CAS  PubMed  Google Scholar 

  34. Leong, K. W., Cheng, C. W., Wong, C. M., Ng, I. O., Kwong, Y. L., & Tse, E. (2017). miR-874-3p is down-regulated in hepatocellular carcinoma and negatively regulates PIN1 expression. Oncotarget, 8, 11343–11355.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Xia, B., Lin, M., Dong, W., Chen, H., Li, B., Zhang, X., Hou, Y., & Lou, G. (2018). Upregulation of miR-874-3p and miR-874-5p inhibits epithelial ovarian cancer malignancy via SIK2. Journal of Biochemical and Molecular Toxicology, 32, e22168.

    Article  PubMed  Google Scholar 

  36. Que, K., Tong, Y., Que, G., Li, L., Lin, H., Huang, S., Wang, R., & Tang, L. (2017). Downregulation of miR-874-3p promotes chemotherapeutic resistance in colorectal cancer via inactivation of the Hippo signaling pathway. Oncology Report, 38, 3376–3386.

    CAS  Google Scholar 

  37. Wang, Y., Chen, H., & Wei, X. (2021). Circ_0007142 downregulates miR-874-3p-mediated GDPD5 on colorectal cancer cells. European Journal of Clinical Investigation, 51, e13541.

    Article  CAS  PubMed  Google Scholar 

  38. Huang, W. J., Wang, Y., Liu, S., Yang, J., Guo, S. X., Wang, L., Wang, H., & Fan, Y. F. (2018). Silencing circular RNA hsa_circ_0000977 suppresses pancreatic ductal adenocarcinoma progression by stimulating miR-874-3p and inhibiting PLK1 expression. Cancer Letters, 422, 70–80.

    Article  CAS  PubMed  Google Scholar 

  39. Cheng, X., Wang, X., Wu, Z., Tan, S., Zhu, T., & Ding, K. (2019). CORO1C expression is associated with poor survival rates in gastric cancer and promotes metastasis in vitro. FEBS Open Bio, 9, 1097–1108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lim, J. P., Shyamasundar, S., Gunaratne, J., Scully, O. J., Matsumoto, K., & Bay, B. H. (2017). YBX1 gene silencing inhibits migratory and invasive potential via CORO1C in breast cancer in vitro. BMC Cancer, 17, 201.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Li, J., Tian, L., Jing, Z., Guo, Z., Nan, P., Liu, F., Zou, S., Yang, L., Xie, X., & Zhu, Y., et al. (2021). Cytoplasmic RAD23B interacts with CORO1C to synergistically promote colorectal cancer progression and metastasis. Cancer Letters, 516, 13–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

L.W. designed and performed the research; L.W., Z.H. analyzed the data; L.W. wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhipeng Hong.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Hong, Z. Circular RNA circ-SLC7A5 Functions as a Competing Endogenous RNA to Impact Cell Biological Behaviors in Esophageal Squamous Cell Carcinoma (ESCC). Cell Biochem Biophys 82, 139–151 (2024). https://doi.org/10.1007/s12013-023-01183-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-023-01183-8

Keywords

Navigation