Skip to main content
Log in

Functional Diversity of SIRT7 Across Cellular Compartments: Insights and Perspectives

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Posttranslational modifications (PTMs) play important roles in the regulation of protein function. Acetylation and deacetylation are among the most important PTMs. SIRT7 is a relatively understudied member of the sirtuin family, but recent studies have revealed that it plays a regulatory role in a variety of cellular activities, such as genome stabilization and repair, gene translation, ribosome production and other important processes. Here, we provide a list of the functions and mechanisms of SIRT7 in various organelles and show the important role of SIRT7 in maintaining normal cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Allfrey, V. G., Faulkner, R., & Mirsky, A. E. (1964). Acetylation + methylation of histones + their possible role in regulation of RNA synthesis. Proceedings of the National Academy of Sciences of the United States of America, 51(5), 786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Narita, T., Weinert, B. T., & Choudhary, C. (2019). Functions and mechanisms of non-histone protein acetylation. Nature Reviews Molecular Cell Biology, 20(3), 156–174

    Article  CAS  PubMed  Google Scholar 

  3. Michishita, E., Park, J. Y., Burneskis, J. M., Barrett, J. C., & Horikawa, I. (2005). Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Molecular Biology of the Cell, 16(10), 4623–4635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tsai, Y. C., Greco, T. M., Boonmee, A., Miteva, Y., & Cristea, I. M. (2012). Functional proteomics establishes the interaction of SIRT7 with chromatin remodeling complexes and expands its role in regulation of RNA polymerase I transcription. Molecular & Cellular Proteomics, 11(2), 60–76

  5. Fukuda, M., Yoshizawa, T., Karim, M. F., Sobuz, S. U., Korogi, W., Kobayasi, D., Okanishi, H., Tasaki, M., Ono, K., & Sawa, T., et al. (2018). SIRT7 has a critical role in bone formation by regulating lysine acylation of SP7/Osterix. Nature Communications, 9, 2833

  6. Shin, J. Y., He, M., Liu, Y. F., Paredes, S., Villanova, L., Brown, K., Qiu, X. L., Nabavi, N., Mohrin, M., & Wojnoonski, K., et al. (2013). SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease. Cell Reports, 5(3), 654–665

    Article  CAS  PubMed  Google Scholar 

  7. Yamamura, S., Izumiya, Y., Araki, S., Nakamura, T., Kimura, Y., Hanatani, S., Yamada, T., Ishida, T., Yamamoto, M., & Onoue, Y., et al. (2020). Cardiomyocyte Sirt (Sirtuin) 7 ameliorates stress-induced cardiac hypertrophy by interacting with and deacetylating GATA4. Hypertension, 75(1), 98–108

    Article  CAS  PubMed  Google Scholar 

  8. Ryu, D., Jo, Y. S., Lo Sasso, G., Stein, S., Zhang, H. B., Perino, A., Lee, J. U., Zeviani, M., Romand, R., & Hottiger, M. O., et al. (2014). A SIRT7-dependent acetylation switch of GABP beta 1 controls mitochondrial function. Cell Metabolism, 20(5), 856–869

    Article  CAS  PubMed  Google Scholar 

  9. Chen, E. E. M., Zhang, W., Ye, C., Gao, X., Jiang, L., Zhao, T., Pan, Z., & Xue, D. (2017). Knockdown of SIRT7 enhances the osteogenic differentiation of human bone marrow mesenchymal stem cells partly via activation of the Wnt/beta-catenin signaling pathway. Cell Death & Disease, 8(9), e3042

    Article  Google Scholar 

  10. Yi, X. L., Wang, H. N., Yang, Y. Q., Wang, H., Zhang, H. X., Guo, S., Chen, J. R., Du, J., Tian, Y. Z., & Ma, J. J. et al.(2023). SIRT7 orchestrates melanoma progression by simultaneously promoting cell survival and immune evasion via UPR activation. Signal Transduction and Targeted Therapy, 8(1), 107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. He, X. M., Li, Y. Z., Chen, Q., Zheng, L., Lou, J. Y., Lin, C. A. S., Gong, J. L., Zhu, Y., & Wu, Y. L. (2022). O-GlcNAcylation and stablization of SIRT7 promote pancreatic cancer progression by blocking the SIRT7-REG gamma interaction. Cell Death and Differentiation, 29(10), 1970–1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Barber, M. F., Michishita-Kioi, E., Xi, Y. X., Tasselli, L., Kioi, M., Moqtaderi, Z., Tennen, R. I., Paredes, S., Young, N. L., & Chen, K. F., et al. (2012). SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature, 487(7405), 114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pan, P. W., Feldman, J. L., Devries, M. K., Dong, A. P., Edwards, A. M., & Denu, J. M. (2011). Structure and biochemical functions of SIRT6. Journal Of Biological Chemistry, 286(16), 14575–14587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Simonet, N. G., Thackray, J. K., Vazquez, B. N., Ianni, A., Espinosa-Alcantud, M., Morales-Sanfrutos, J., Hurtado-Bages, S., Sabido, E., Buschbeck, M., & Tischfield, J. et al.(2020). SirT7 auto-ADP-ribosylation regulates glucose starvation response throughmH2A1. Science Advances, 6(30), eaaz2590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Du, J. T., Zhou, Y. Y., Su, X. Y., Yu, J. J., Khan, S., Jiang, H., Kim, J., Woo, J., Kim, J. H., & Choi, B. H., et al. (2011). Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science, 334(6057), 806–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, W. W., Angulo-Ibanez, M., Lyu, J., Kurra, Y., Tong, Z., Wu, B., Zhang, L., Sharma, V., Zhou, J., & Lin, H., et al. (2019). A click chemistry approach reveals the chromatin-dependent histone H3K36 deacylase nature of SIRT7. J. Am. Chem. Soc, 141, 2462–2473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vazquez, B. N., Blengini, C. S., Hernandez, Y., Serrano, L., & Schindler, K. (2019). SIRT7 promotes chromosome synapsis during prophase I of female meiosis. Chromosoma, 128(3), 369–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kabzinski, J., Walczak, A., Mik, M., & Majsterek, I. (2020). Sirt3 regulates the level of mitochondrial DNA repair activity through deacetylation of NEIL1, NEIL2, OGG1, MUTYH, APE1 and LIG3 in colorectal cancer. Polish Journal of Surgery, 92(1), 1–4

    Article  Google Scholar 

  19. Xu, Z., Zhang, L., Zhang, W. J., Meng, D., Zhang, H. X., Jiang, Y., Xu, X. J., Van Meter, M., Seluanov, A., & Gorbunova, V., et al. (2015). SIRT6 rescues the age related decline in base excision repair in a PARP1-dependent manner. Cell Cycle, 14(2), 269–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yamamori, T., DeRicco, J., Naqvi, A., Hoffman, T. A., Mattagajasingh, I., Kasuno, K., Jung, S. B., Kim, C. S., & Irani, K. (2010). SIRT1 deacetylates APE1 and regulates cellular base excision repair. Nucleic Acids Research, 38(3), 832–845

    Article  CAS  PubMed  Google Scholar 

  21. Vazquez, B. N., Thackray, J. K., Simonet, N. G., Kane-Goldsmith, N., Martinez-Redondo, P., Nguyen, T., Bunting, S., Vaquero, A., Tischfield, J. A., & Serrano, L. (2016). SIRT7 promotes genome integrity and modulates non-homologous end joining DNA repair. EMBO Journal, 35(14), 1488–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moscat, J., & Diaz-Meco, M. T. (2009). p62 at the crossroads of autophagy, apoptosis, and cancer. Cell, 137(6), 1001–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, M. T., Xiong, J. N., Yang, L. Q., Huang, J., Zhang, Y., Liu, M. H., Wang, L. A., Ji, J. G., Zhao, Y., & Zhu, W. G., et al. (2022). Acetylation of p62 regulates base excision repair through interaction with APE1. Cell Reports, 40(3), 111116

    Article  CAS  PubMed  Google Scholar 

  24. Grundy, G. J., & Parsons, J. L. (2020). Base excision repair and its implications to cancer therapy. Essays in Biochemistry, 64, 831–843

  25. Hwang, B. J., Jin, J., Gao, Y., Shi, G. L., Madabushi, A., Yan, A., Guan, X., Zalzman, M., Nakajima, S., & Lan, L., et al. (2015). SIRT6 protein deacetylase interacts with MYH DNA glycosylase, APE1 endonuclease, and Rad9-Rad1-Hus1 checkpoint clamp. BMC Molecular Biology, 16, 12

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tang, M., Tang, H. Q., Tu, B., & Zhu, W. G. (2021). SIRT7: a sentinel of genome stability. Open Biology, 11(6), 210047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mao, Z. Y., Bozzella, M., Seluanov, A., & Gorbunova, V. (2008). DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle, 7(18), 2902–2906

    Article  CAS  PubMed  Google Scholar 

  28. Kapoor-Vazirani, P., Rath, S. K., Liu, X., Shu, Z., Bowen, N. E., Chen, Y. T., Haji-Seyed-Javadi, R., Daddacha, W., Minten, E. V., & Danelia, D., et al. (2022). SAMHD1 deacetylation by SIRT1 promotes DNA end resection by facilitating DNA binding at double-strand breaks. Nature Communications, 13(1), 6707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jin, H., Lee, B., Luo, Y., Choi, Y., Choi, E. H., Jin, H., Kim, K. B., Seo, S. B., Kim, Y. H., & Lee, H. H., et al. (2020). FOXL2 directs DNA double-strand break repair pathways by differentially interacting with Ku. Nature Communications, 11(1), 2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, Y., Zhang, H. P., Xu, Z., Tang, H. Y., Geng, A. K., Cai, B. L., Su, T., Shi, J. J., Jiang, C. Z., & Tian, X., et al. (2019). A PARP1-BRG1-SIRT1 axis promotes HR repair by reducing nucleosome density at DNA damage sites. Nucleic Acids Research, 47(16), 8563–8580

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Atsumi, Y., Minakawa, Y., Ono, M., Dobashi, S., Shinohe, K., Shinohara, A., Takeda, S., Takagi, M., Takamatsu, N., & Nakagama, H., et al. (2015). ATM and SIRT6/SNF2H mediate transient H2AX stabilization when DSBs form by blocking HUWE1 to allow efficient gamma H2AX foci formation. Cell Reports, 13(12), 2728–2740

    Article  CAS  PubMed  Google Scholar 

  32. Mao, Z. Y., Hine, C., Tian, X., Van Meter, M., Au, M., Vaidya, A., & Seluanov, A. (2011). Gorbunova V(2011)SIRT6 promotes DNA repair under stress by activating PARP1. Science, 332(6036), 1443–1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tang, M., Li, Z. M., Zhang, C. H., Lu, X. P., Tu, B., Cao, Z. Y., Li, Y. L., Chen, Y. C., Jiang, L., & Wang, H., et al. (2019). SIRT7-mediated ATM deacetylation is essential for its deactivation and DNA damage repair. Science Advances, 5(3), eaav1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Francia, S., Cabrini, M., Matti, V., & Oldani, A. (2016). di Fagagna FD DICER, DROSHA and DNA damage response RNAs are necessary for the secondary recruitment of DNA damage response factors. Journal of Cell Science, 129(7), 1468–1476

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, P. Y., Li, G. L., Deng, Z. J., Liu, L. Y., Chen, L., Tang, J. Z., Wang, Y. Q., Cao, S. T., Fang, Y. X., & Wen, F. P., et al. (2016). Dicer interacts with SIRT7 and regulates H3K18 deacetylation in response to DNA damaging agents. Nucleic Acids Research, 44(8), 3629–3642

    Article  CAS  PubMed  Google Scholar 

  36. Li, L., Shi, L., Yang, S. D., Yan, R. R., Zhang, D., Yang, J. G., He, L., Li, W. J., Yi, X., & Sun, L. Y., et al. (2016). SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nature Communications, 7, 12235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bao, X. C., Liu, Z., Zhang, W., Gladysz, K., Fung, Y. M. E., Tian, G. F., Xiong, Y., Wong, J. W. H., Yuen, K. W. Y., & Li, X. D. (2019). Glutarylation of histone H4 lysine 91 regulates chromatin dynamics. Molecular Cell, 76(4), 660

    Article  CAS  PubMed  Google Scholar 

  38. Song, C. L., Hotz-Wagenblatt, A., Voit, R., & Grummt, I. (2017). SIRT7 and the DEAD-box helicase DDX21 cooperate to resolve genomic R loops and safeguard genome stability. Genes & Development, 31(13), 1370–1381

    Article  CAS  Google Scholar 

  39. Ganley, A. R. D., Kobayashi, T., & Ribosomal, D. N. A. (2014). and cellular senescence: new evidence supporting the connection between rDNA and aging. FEMS Yeast Research, 14(1), 49–59

    Article  CAS  PubMed  Google Scholar 

  40. Tchurikov, N. A., Fedoseeva, D. M., Sosin, D. V., Snezhkina, A. V., Melnikova, N. V., Kudryavtseva, A. V., Kravatsky, Y. V., & Kretova, O. V. (2015). Hot spots of DNA double-strand breaks and genomic contacts of human rDNA units are involved in epigenetic regulation. Journal of Molecular Cell Biology, 7(4), 366–382

    Article  CAS  PubMed  Google Scholar 

  41. Ianni, A., Hoelper, S., Krueger, M., Braun, T., & Bober, E. (2017). Sirt7 stabilizes rDNA heterochromatin through recruitment of DNMT1 and Sirt1. Biochemical and Biophysical Research Communications, 492(3), 434–440

    Article  CAS  PubMed  Google Scholar 

  42. Paredes, S., Angulo-Ibanez, M., Tasselli, L., Carlson, S. M., Zheng, W., Li, T. M., & Chua, K. F. (2018). The epigenetic regulator SIRT7 guards against mammalian cellular senescence induced by ribosomal DNA instability. Journal of Biological Chemistry, 293(28), 11242–11250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vazquez, B. N., Thackray, J. K., Simonet, N. G., Chahar, S., Kane-Goldsmith, N., Newkirk, S. J., Lee, S., Xing, J. C., Verzi, M. P., & An, W. F., et al. (2019). SIRT7 mediates L1 elements transcriptional repression and their association with the nuclear lamina. Nucleic Acids Research, 47(15), 7870–7885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu, Z. J., Qian, M. X., Tang, X. L., Hu, W. J., Sun, S. M., Li, G., Zhang, S. J., Meng, F. B., Cao, X. Y., & Sun, J., et al. (2019). SIRT7 couples light-driven body temperature cues to hepatic circadian phase coherence and gluconeogenesis. Nature Metabolism, 1(11), 1141

    Article  CAS  PubMed  Google Scholar 

  45. Blank, M. F., Chen, S., Poetz, F., Schnolzer, M., Voit, R., & Grummt, I. (2017). SIRT7-dependent deacetylation of CDK9 activates RNA polymerase II transcription. Nucleic Acids Research, 45(5), 2675–2686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yoshizawa, T., Karim, M. F., Sato, Y., Senokuchi, T., Miyata, K., Fukuda, T., Go, C., Tasaki, M., Uchimura, K., & Kadomatsu, T., et al. (2014). SIRT7 controls hepatic lipid metabolism by regulating the ubiquitin-proteasome pathway. Cell Metabolism, 19(4), 712–721

    Article  CAS  PubMed  Google Scholar 

  47. Chen, S. F., Seiler, J., Santiago-Reichelt, M., Felbe, K., Grummt, I., & Voit, R. (2013). Repression of RNA polymerase I upon stress is caused by inhibition of RNA-dependent deacetylation of PAF53 by SIRT7. Molecular Cell, 52(3), 303–313

    Article  CAS  PubMed  Google Scholar 

  48. Iyer-Bierhoff, A., Krogh, N., Tessarz, P., Ruppert, T., Nielsen, H., & Grummt, I. (2018). SIRT7-dependent deacetylation of fibrillarin controls histone H2A methylation and rRNA synthesis during the cell cycle. Cell Reports, 25(11), 2946

    Article  CAS  PubMed  Google Scholar 

  49. Tsai, Y. C., Greco, T. M., & Cristea, I. M. (2014). Sirtuin 7 plays a role in ribosome biogenesis and protein synthesis. Molecular & Cellular Proteomics, 13(1), 73–83

    Article  CAS  Google Scholar 

  50. Chen, S. F., Blank, M. F., Iyer, A., Huang, B. D., Wang, L., Grummt, I., & Voit, R., et al. (2016). SIRT7-dependent deacetylation of the U3-55k protein controls pre-rRNA processing. Nature Communications, 7, 10734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chalkiadaki, A., & Guarente, L. (2012). Sirtuins mediate mammalian metabolic responses to nutrient availability. Nature Reviews Endocrinology, 8(5), 287–296

    Article  CAS  PubMed  Google Scholar 

  52. Scher, M. B., Vaquero, A., & Reinberg, D. (2007). SirT3 is a nuclear NAD(+)-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes & Development, 21(8), 920–928

    Article  CAS  Google Scholar 

  53. Schlicker, C., Gertz, M., Papatheodorou, P., Kachholz, B., Becker, C. F. W., & Steegborn, C. (2008). Substrates and regulation mechanisms for the human mitochondrial Sirtuins Sirt3 and Sirt5. Journal of Molecular Biology, 382(3), 790–801

    Article  CAS  PubMed  Google Scholar 

  54. Yang, H., Yang, T., Baur, J. A., Perez, E., Matsui, T., Carmona, J. J., Lamming, D. W., Souza-Pinto, N. C., Bohr, V. A., & Rosenzweig, A., et al. (2007). Nutrient-sensitive mitochondrial NAD(+) levels dictate cell survival. Cell, 130(6), 1095–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xu, S., Tao, H., Cao, W., Cao, L., Lin, Y., Zhao, S. M., Xu, W., Cao, J., & Zhao, J. Y. (2021). Ketogenic diets inhibit mitochondrial biogenesis and induce cardiac fibrosis. Signal Transduction and Targeted Therapy, 6(1), 54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mohrin, M., Shin, J., Liu, Y., Brown, K., Luo, H., Xi, Y., Haynes, C. M., & Chen, D. (2015). A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science, 347(6228), 1374–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yan, W. W., Liang, Y. L., Zhang, Q. X., Wang, D., Lei, M. Z., Qu, J., He, X. H., Lei, Q. Y., & Wang, Y. P. (2018). Arginine methylation of SIRT7 couples glucose sensing with mitochondria biogenesis. EMBO Reports, 19(12), e46377

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wu, D., Li, Y. L., Zhu, K. S., Wang, H. Y., & Zhu, W. G. (2018). Advances in cellular characterization of the Sirtuin lsoform, SIRT7. Frontiers in Endocrinology, 9, 652

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kaiser, A., Schmidt, M., Huber, O., Frietsch, J. J., Scholl, S., Heidel, F. H., Hochhaus, A., Muller, J. P., & Ernst, T. (2020). SIRT7: an influence factor in healthy aging and the development of age-dependent myeloid stem-cell disorders. Leukemia, 34(8), 2206–2216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li, W. L., Zhu, D. D., & Qin, S. H. (2018). SIRT7 suppresses the epithelial-to-mesenchymal transition in oral squamous cell carcinoma metastasis by promoting SMAD4 deacetylation. Journal of Experimental & Clinical Cancer Research, 37(1), 148

    Article  Google Scholar 

  61. Xiang, J. Y., Zhang, N., Sun, H., Su, L., Zhang, C. C., Xu, H. L., Feng, J., Wang, M. L., Chen, J., & Liu, L. M., et al. (2020). Disruption of SIRT7 increases the efficacy of checkpoint inhibitor via MEF2D regulation of programmed cell death 1 ligand 1 in hepatocellular carcinoma cells. Gastroenterology, 158(3), 664

    Article  CAS  PubMed  Google Scholar 

  62. Zhang, C., Li, Y. Q., Liu, B. H., Ning, C., Li, Y. M., Wang, Y., & Li, Z. (2022). Discovery of SIRT7 inhibitor as new therapeutic options against liver cancer. Frontiers in Cell and Developmental Biology, 9, 813233

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yu, Q., Dong, L., Li, Y., & Liu, G. W. (2018). SIRT1 and HIF1 alpha signaling in metabolism and immune responses. Cancer Letters, 418, 20–26

    Article  CAS  PubMed  Google Scholar 

  64. Arunachalam, G., Samuel, S. M., Marei, I., Ding, H., & Triggle, C. R. (2014). Metformin modulates hyperglycaemia-induced endothelial senescence and apoptosis through SIRT1. British Journal of Pharmacology, 171(2), 523–535

    Article  CAS  PubMed  Google Scholar 

  65. Niederer, F., Ospelt, C., Brentano, F., Hottiger, M. O., Gay, R. E., Gay, S., Detmar, M., & Kyburz, D. (2011). SIRT1 overexpression in the rheumatoid arthritis synovium contributes to proinflammatory cytokine production and apoptosis resistance. Annals of the Rheumatic Diseases, 70(10), 1866–1873

    Article  CAS  PubMed  Google Scholar 

  66. Hariharan, N., Maejima, Y., Nakae, J., Paik, J., DePinho, R. A., & Sadoshima, J. (2010). Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circulation Research, 107(12), 1470–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kume, S., Uzu, T., Horiike, K., Chin-Kanasaki, M., Isshiki, K., Araki, S., Sugimoto, T., Haneda, M., Kashiwagi, A., & Koya, D. (2010). Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. Journal of Clinical Investigation, 120(4), 1043–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vaquero, A., Scher, M. B., Lee, D. H., Sutton, A., Cheng, H. L., Alt, F. W., Serrano, L., Sternglanz, R., & Reinberg, D. (2006). SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes & Development, 20(10), 1256–1261

    Article  CAS  Google Scholar 

  69. Kim, H. S., Vassilopoulos, A., Wang, R. H., Lahusen, T., Xiao, Z., Xu, X. L., Li, C. L., Veenstra, T. D., Li, B., & Yu, H. T., et al. (2011). SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell, 20(4), 487–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vassilopoulos, A., Pennington, J. D., Andresson, T., Rees, D. M., Bosley, A. D., Fearnley, I. M., Ham, A., Flynn, C. R., Hill, S., & Rose, K. L., et al. (2014). SIRT3 deacetylates ATP synthase F-1 complex proteins in response to nutrient- and exercise-induced stress. Antioxidants & Redox Signaling, 21(4), 551–564

    Article  CAS  Google Scholar 

  71. Wood, J. G., Schwer, B., Wickremesinghe, P. C., Hartnett, D. A., Burhenn, L., Garcia, M., Li, M., Verdin, E., & Helfand, S. L. (2018). Sirt4 is a mitochondrial regulator of metabolism and lifespan in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 115(7), 1564–1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lin, Z. F., Xu, H. B., Wang, J. Y., Lin, Q., Ruan, Z., Liu, F. B., Jin, W., Huang, H. H., & Chen, X. (2013). SIRT5 desuccinylates and activates SOD1 to eliminate ROS. Biochemical and Biophysical Research Communications, 441(1), 191–195

    Article  CAS  PubMed  Google Scholar 

  73. Meng, F. B., Qian, M. X., Peng, B., Peng, L. Y., Wang, X. H., Zheng, K., Liu, Z. J., Tang, X. L., Zhang, S. J., & Sun, S. M., et al. (2020). Synergy between SIRT1 and SIRT6 helps recognize DNA breaks and potentiates the DNA damage response and repair in humans and mice. Elife, 9, e55828

    Article  PubMed  PubMed Central  Google Scholar 

  74. Toiber, D., Erdel, F., Bouazoune, K., Silberman, D. M., Zhong, L., Mulligan, P., Sebastian, C., Cosentino, C., Martinez-Pastor, B., & Giacosa, S., et al. (2013). SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Molecular Cell, 51(4), 454–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Geng, A. K., Tang, H. Y., Huang, J., Qian, Z., Qin, N., Yao, Y. X., Xu, Z., Chen, H., Lan, L., & Xie, H. J., et al. (2020). The deacetylase SIRT6 promotes the repair of UV-induced DNA damage by targeting DDB2. Nucleic Acids Research, 48(16), 9181–9194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mohrin, M., Shin, J. Y., Liu, Y. F., Brown, K., Luo, H. Z., Xi, Y. N., Haynes, C. M., & Chen, D. (2015). A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science, 347(6228), 1374–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hubbi, M. E., Hu, H. X., Kshitiz, Gilkes, D. M., & Semenza, G. L. (2013). Sirtuin-7 inhibits the activity of hypoxia-inducible factors. Journal of Biological Chemistry, 288(29), 20768–20775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Natural Science Foundation of Zhejiang Province, LGD22H160007.

Author information

Authors and Affiliations

Authors

Contributions

S.W. wrote and edited the manuscript, and S.J. edited and approved the manuscript.

Corresponding authors

Correspondence to Songtao Wu or Shengnan Jia.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Jia, S. Functional Diversity of SIRT7 Across Cellular Compartments: Insights and Perspectives. Cell Biochem Biophys 81, 409–419 (2023). https://doi.org/10.1007/s12013-023-01162-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-023-01162-z

Keywords

Navigation