Skip to main content

Advertisement

Log in

ER Stress Decreases Gene Expression Of Transmembrane Protein 117 Via Activation of PKR-like ER Kinase

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

A Correction to this article was published on 02 September 2023

This article has been updated

Abstract

Stress response is an inherent mechanism in the endoplasmic reticulum (ER). The inducers of ER cause a specific cascade of reactions, leading to gene expression. Transmembrane protein 117 (TMEM117) is in the ER and plasma membrane. In our previous study, TMEM117 protein expression was found to be decreased by an ER stress inducer. However, the mechanism underlying this decrease in TMEM117 protein expression remains unclear. This study aimed to elucidate the mechanism underlying the decrease in TMEM117 protein expression during ER stress and identify the unfolded protein response (UPR) pathway related to decreased TMEM117 protein expression. We showed that the gene expression levels of TMEM117 were decreased by ER stress inducers and were regulated by PKR-like ER kinase (PERK), indicating that TMEM117 protein expression was regulated by the signaling pathway. Surprisingly, gene knockdown of activating transcription factor 4 (ATF4) downstream of PERK did not affect the gene expression of TMEM117. These results suggest that TMEM117 protein expression during ER stress is transcriptionally regulated by PERK but not by ATF4. TMEM117 has a potential to be a new therapeutic target against ER stress-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Wang, G., Yang, Z. Q., & Zhang, K. (2010). Endoplasmic reticulum stress response in cancer: molecular mechanism and therapeutic potential. American Journal of Translational Research, 2(1), 65–74.

    PubMed  PubMed Central  Google Scholar 

  2. Walter, P., & Ron, D. (2011). The unfolded protein response: from stress pathway to homeostatic regulation. Science, 334(6059), 1081–6.

    Article  CAS  PubMed  Google Scholar 

  3. Pfaffenbach, K. T., & Lee, A. S. (2011). The critical role of GRP78 in physiologic and pathologic stress. Current Opinion in Cell Biology, 23(2), 150–6.

    Article  CAS  PubMed  Google Scholar 

  4. Harding, H. P., Novoa, I., Zhang, Y., Zeng, H., Wek, R., Schapira, M., & Ron, D. (2000). Regulated translation initiation controls stress-induced gene expression in mammalian cells. Molecular Cell, 6(5), 1099–108.

    Article  CAS  PubMed  Google Scholar 

  5. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T., & Mori, K. (2001). XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell, 107(7), 881–91.

    Article  CAS  PubMed  Google Scholar 

  6. Lee, A. H., Iwakoshi, N. N., & Glimcher, L. H. (2003). XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Molecular and Cell Biology, 23(21), 7448–59.

    Article  CAS  Google Scholar 

  7. Ye, J., Rawson, R. B., Komuro, R., Chen, X., Davé, U. P., Prywes, R., Brown, M. S., & Goldstein, J. L. (2000). ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Molecular Cell, 6(6), 1355–64.

    Article  CAS  PubMed  Google Scholar 

  8. Yoshida, H., Okada, T., Haze, K., Yanagi, H., Yura, T., Negishi, M., & Mori, K. (2000). ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Molecular and Cell Biology, 20(18), 6755–67.

    Article  CAS  Google Scholar 

  9. Ghobrial, I. M., Witzig, T. E., & Adjei, A. A. (2005). Targeting apoptosis pathways in cancer therapy. CA Cancer Journal for Clinicians, 55(3), 178–94.

    Article  Google Scholar 

  10. Logue, S. E., Cleary, P., Saveljeva, S., & Samali, A. (2013). New directions in ER stress-induced cell death. Apoptosis, 18(5), 537–46.

    Article  PubMed  Google Scholar 

  11. Hetz, C., Zhang, K., & Kaufman, R. J. (2020). Mechanisms, regulation and functions of the unfolded protein response. Nature Reviews Molecular Cell Biology, 21(8), 421–438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bürgi, J., Xue, B., Uversky, V. N., & van der Goot, F. G. (2016). Intrinsic disorder in transmembrane proteins: roles in signaling and topology prediction. PLoS ONE, 11(7), e0158594.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tamaki, T., Kamatsuka, K., Sato, T., Morooka, S., Otsuka, K., Hattori, M., & Sugiyama, T. (2017). A novel transmembrane protein defines the endoplasmic reticulum stress-induced cell death pathway. Biochemical and Biophysical Research Communications, 486(1), 149–155.

    Article  CAS  PubMed  Google Scholar 

  14. Maruyama, R., Kiyohara, Y., Kudo, Y., & Sugiyama, T. (2023). Effects of the anti-inflammatory drug celecoxib on cell death signaling in human colon cancer. Naunyn Schmiedebergs Archives of Pharmacology, 396(6), 1171–1185.

    Article  CAS  PubMed  Google Scholar 

  15. Smale, S. T. (2010). β-galactosidase assay. Cold Spring Harbor Protocols, 2010(5), pdb.prot5423.

    Article  PubMed  Google Scholar 

  16. Wang, Y., Osakue, D., Yang, E., Zhou, Y., Gong, H., Xia, X., & Du, Y. (2019). Endoplasmic reticulum stress response of trabecular meshwork stem cells and trabecular meshwork cells and protective effects of activated PERK pathway. Investigative Ophthalmology and Visual Science, 60(1), 265–273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yoshino, H., Kumai, Y., & Kashiwakura, I. (2017). Effects of endoplasmic reticulum stress on apoptosis induction in radioresistant macrophages. Molecular Medicine Reports, 15(5), 2867–2872.

    Article  CAS  PubMed  Google Scholar 

  18. Chien, W., Ding, L. W., Sun, Q. Y., Torres-Fernandez, L. A., Tan, S. Z., Xiao, J., Lim, S. L., Garg, M., Lee, K. L., Kitajima, S., Takao, S., Leong, W. Z., Sun, H., Tokatly, I., Poellinger, L., Gery, S., & Koeffler, P. H. (2014). Selective inhibition of unfolded protein response induces apoptosis in pancreatic cancer cells. Oncotarget, 5(13), 4881–94.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Barez, S. R., Atar, A. M., & Aghaei, M. (2020). Mechanism of inositol-requiring enzyme 1-alpha inhibition in endoplasmic reticulum stress and apoptosis in ovarian cancer cells. Journal of Cell Communications and Signal, 14(4), 403–415.

    Article  Google Scholar 

  20. Li, W., Wang, Y., Zhu, L., Du, S., Mao, J., Wang, S., Bo, Q., Tu, Y., & Yi, Q. (2021). The P300/XBP1s/Herpud1 axis promotes macrophage M2 polarization and the development of choroidal neovascularization. Journal of Cellular and Molecular Medicine, 25(14), 6709–6720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shu, C. W., Sun, F. C., Cho, J. H., Lin, C. C., Liu, P. F., Chen, P. Y., Chang, M. D., Fu, H. W., & Lai, Y. K. (2008). GRP78 and Raf-1 cooperatively confer resistance to endoplasmic reticulum stress-induced apoptosis. Journal of Cellular Physiology, 215(3), 627–35.

    Article  CAS  PubMed  Google Scholar 

  22. Wang, N., Ma, J., Ma, Y., Lu, L., Ma, C., Qin, P., Gao, E., Zuo, M., Yang, J., & Yang, L. (2021). Electroacupuncture Pretreatment Mitigates Myocardial Ischemia/Reperfusion Injury via XBP1/GRP78/Akt Pathway. Frontiers in Cardiovascular Medicine, 8, 629547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kroeger, H., Grimsey, N., Paxman, R., Chiang, W. C., Plate, L., Jones, Y., Shaw, P. X., Trejo, J., Tsang, S. H., Powers, E., Kelly, J. W., Wiseman, R. L., & Lin, J. H. (2018). The unfolded protein response regulator ATF6 promotes mesodermal differentiation. Science Signaling, 11(517), eaan5785.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gonen, N., Sabath, N., Burge, C. B., & Shalgi, R. (2019). Widespread PERK-dependent repression of ER targets in response to ER stress. Scientific Reports, 9(1), 4330.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Oyadomari, S., & Mori, M. (2004). Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death and Differentiation, 11(4), 381–9.

    Article  CAS  PubMed  Google Scholar 

  26. Libé, R., Horvath, A., Vezzosi, D., Fratticci, A., Coste, J., Perlemoine, K., Ragazzon, B., Guillaud-Bataille, M., Groussin, L., Clauser, E., Raffin-Sanson, M. L., Siegel, J., Moran, J., Drori-Herishanu, L., Faucz, F. R., Lodish, M., Nesterova, M., Bertagna, X., Bertherat, J., & Stratakis, C. A. (2011). Frequent phosphodiesterase 11A gene (PDE11A) defects in patients with Carney complex (CNC) caused by PRKAR1A mutations: PDE11A may contribute to adrenal and testicular tumors in CNC as a modifier of the phenotype. Journal of Clinical Endocrinology and Metabolism, 96(1), E208–14.

    Article  PubMed  Google Scholar 

  27. Shimizu, M., Li, J., Maruyama, R., Inoue, J., & Sato, R. (2013). FGF19 (fibroblast growth factor 19) as a novel target gene for activating transcription factor 4 in response to endoplasmic reticulum stress. Biochemical Journal, 450(1), 221–9.

    Article  CAS  PubMed  Google Scholar 

  28. Li, J., Li, T. X., Ma, Y., Zhang, Y., Li, D. Y., & Xu, H. R. (2019). Bursopentin (BP5) induces G1 phase cell cycle arrest and endoplasmic reticulum stress/mitochondria-mediated caspase-dependent apoptosis in human colon cancer HCT116 cells. Cancer Cell International, 19, 130.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li, X. X., Zhang, H. S., Xu, Y. M., Zhang, R. J., Chen, Y., Fan, L., Qin, Y. Q., Liu, Y., Li, M., & Fang, J. (2017). Knockdown of IRE1α inhibits colonic tumorigenesis through decreasing β-catenin and IRE1α targeting suppresses colon cancer cells. Oncogene, 36(48), 6738–6746.

    Article  CAS  PubMed  Google Scholar 

  30. Sinal, C. J., Tohkin, M., Miyata, M., Ward, J. M., Lambert, G., & Gonzalez, F. J. (2000). Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell, 102(6), 731–44.

    Article  CAS  PubMed  Google Scholar 

  31. Das, S. K., Chu, W. S., Mondal, A. K., Sharma, N. K., Kern, P. A., Rasouli, N., & Elbein, S. C. (2008). Effect of pioglitazone treatment on endoplasmic reticulum stress response in human adipose and in palmitate-induced stress in human liver and adipose cell lines. American Journal of Physiology-Endocrinology and Metabolism, 295(2), E393–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Walter, F., O'Brien, A., Concannon, C. G., Düssmann, H., & Prehn, J. H. M. (2018). ER stress signaling has an activating transcription factor 6α (ATF6)-dependent “off-switch”. Journal of Biological Chemistry, 293(47), 18270–18284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lü, P., Li, X., Ruan, L., Xu, H., & Liu, Q. (2014). Effect of siRNA PERK on fluoride-induced osteoblastic differentiation in OS732 cells. Biological Trace Element Research, 159(1-3), 434–9.

    Article  PubMed  Google Scholar 

  34. Ming, J., Ruan, S., Wang, M., Ye, D., Fan, N., Meng, Q., Tian, B., & Huang, T. (2015). A novel chemical, STF-083010, reverses tamoxifen-related drug resistance in breast cancer by inhibiting IRE1/XBP1. Oncotarget, 6(38), 40692–703.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Kazutoshi Mori (Kyoto University) for providing a luciferase expression plasmid for the human bip gene promoter, and Hideaki Watanabe for initial assistance in performing the experiments.

Funding

This research was supported by Tokyo University of Technology.

Author information

Authors and Affiliations

Authors

Contributions

Individual contributions are provided as follows: Conceptualization, R.M. and T.S.; methodology, R.M.; validation, R.M.; formal analysis, R.M.; investigation, R.M.; resources, R.M. and T.S.; data curation, R.M. and T.S.; writing-original draft preparation, R.M. and T.S.; writing-review and editing, R.M. and T.S.; visualization, R.M. and T.S.; supervision, R.M. and T.S.; project administration, R.M.; and funding acquisition, R.M. and T.S.. All the authors have read and agreed to the published version of the paper.

Corresponding author

Correspondence to Ryuto Maruyama.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maruyama, R., Sugiyama, T. ER Stress Decreases Gene Expression Of Transmembrane Protein 117 Via Activation of PKR-like ER Kinase. Cell Biochem Biophys 81, 459–468 (2023). https://doi.org/10.1007/s12013-023-01150-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-023-01150-3

Keywords

Navigation