Skip to main content

Advertisement

Log in

THUMPD3-AS1 facilitates cell growth and aggressiveness by the miR-218-5p/SKAP1 axis in colorectal cancer

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

A Correction to this article was published on 27 November 2023

This article has been updated

Abstract

Background: Colorectal cancer (CRC) is a malignant cancer with a high mortality. Accumulating studies have revealed that mRNAs involved in ceRNA (competing endogenous RNA) network are implicated in the tumorigenesis and development of CRC. Here, we aimed to elucidate the ceRNA network involving Src kinase associated phosphoprotein 1 (SKAP1) in the biological characteristics of CRC. Methods: Expression levels of genes in colon adenocarcinoma (COAD) samples and prognosis of COAD patients were predicted using publicly available online tool. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), clony formation and Transwell assays were conducted to test the biological functions of SKAP1 and THUMPD3 antisense RNA 1 (THUMPD3-AS1) in CRC cells. Western blot was used to measure the protein levels of SKAP1. Gene expression in CRC cells was detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR). The interaction between miR-218-5p and THUMPD3-AS1 (or SKAP1) was verified by RNA pulldown and luciferase reporter assays. Results: SKAP1 was upregulated in COAD tissues and CRC cells and it reflected a poor prognosis in patients with COAD. SKAP1 knockdown inhibited CRC (HT-29 and HCT-116) cell proliferation, migration and invasion. Mechanistically, THUMPD3-AS1 acted as a ceRNA to sponge miR-218-5p and subsequently upregulated SKAP1 expression in CRC cells. SKAP1 overexpression reversed the suppressive effect of THUMPD3-AS1 knockdown on proliferation, migration and invision of CRC cells. Conclusions:THUMPD3-AS1 promotes CRC cell growth and aggressiveness by regulating the miR-218-5p/SKAP1 axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

Abbreviations

CRC:

colorectal cancer

COAD:

colon adenocarcinoma

SKAP1:

Src kinase associated phosphoprotein 1

THUMPD3-AS1:

THUMPD3 antisense RNA 1, miR-218-5p, microRNA-218-5p

ceRNA:

competing endogenous RNA

RT-qPCR:

reverse transcription quantitative polymerase chain reaction

ncRNA:

noncoding RNA

DFS:

disease free survival

OS:

overall survival

DMEM:

Dulbecco’s Modified Eagle Medium

FBS:

fetal bovine serum

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

Wt:

wild type

Mut:

mutant type

NC:

negative control

GAPDH:

glyceraldehyde-3phosphate dehydrogenase.

References

  1. Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D. M., Forman, D., & Bray, F. (2015). Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer, 136(5), E359–86.

    Article  CAS  PubMed  Google Scholar 

  2. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 68(6), 394–424.

    Article  PubMed  Google Scholar 

  3. Zhang, Z., Qian, W., Wang, S., Ji, D., Wang, Q., Li, J., Peng, W., Gu, J., Hu, T., Ji, B., Zhang, Y., Wang, S., & Sun, Y. (2018). Analysis of lncRNA-associated ceRNA network reveals potential lncRNA biomarkers in human colon adenocarcinoma. Cell Physiol Biochem, 49(5), 1778–1791.

    Article  CAS  PubMed  Google Scholar 

  4. Poursheikhani, A., Abbaszadegan, M. R., Nokhandani, N., & Kerachian, M. A. (2020). Integration analysis of long non-coding RNA (lncRNA) role in tumorigenesis of colon adenocarcinoma. BMC Med Genomics, 13(1), 108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ruan, G. T., Wang, S., Zhu, L. C., Liao, X. W., Wang, X. K., Liao, C., Yan, L., Xie, H. L., Gong, Y. Z., Gan, J. L., & Gao, F. (2021). Investigation and verification of the clinical significance and perspective of natural killer group 2 member D ligands in colon adenocarcinoma. Aging (Albany NY), 13(9), 12565–12586.

    Article  CAS  PubMed  Google Scholar 

  6. Li, Z., Sun, Y., He, M., & Liu, J. (2021). Differentially-expressed mRNAs, microRNAs and long noncoding RNAs in intervertebral disc degeneration identified by RNA-sequencing. Bioengineered., 12(1), 1026–1039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shi, Z., Shen, C., Yu, C., Yang, X., Shao, J., Guo, J., Zhu, X., & Zhou, G. (2021). Long non-coding RNA LINC00997 silencing inhibits the progression and metastasis of colorectal cancer by sponging miR-512-3p. Bioengineered., 12(1), 627–639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Micallef, I., & Baron, B. (2021). The mechanistic roles of ncRNAs in promoting and supporting chemoresistance of colorectal cancer. Noncoding RNA, 7, 2.

    Google Scholar 

  9. Salmena, L., Poliseno, L., Tay, Y., Kats, L., & Pandolfi, P. P. (2011). A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell., 146(3), 353–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu, J., Sun, Y., Zhu, B., Lin, Y., Lin, K., Sun, Y., Yao, Z., & Yuan, L. (2021). Identification of a potentially novel LncRNA-miRNA-mRNA competing endogenous RNA network in pulmonary arterial hypertension via integrated bioinformatic analysis. Life Sci, 277, 119455.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, D., An, X., Yu, H., & Li, Z. (2021). The regulatory effect of 6-TG on lncRNA-miRNA-mRNA ceRNA network in triple-negative breast cancer cell line. Biosci Rep, 41, 2.

    Article  Google Scholar 

  12. Luan, Y., Li, X., Luan, Y., Zhao, R., Li, Y., Liu, L., Hao, Y., Oleg Vladimir, B., & Jia, L. (2020). Circulating lncRNA UCA1 promotes malignancy of colorectal cancer via the miR-143/MYO6 axis. Mol Ther Nucleic Acids, 19, 790–803.

    Article  CAS  PubMed  Google Scholar 

  13. Chen, D. L., Lu, Y. X., Zhang, J. X., Wei, X. L., Wang, F., Zeng, Z. L., Pan, Z. Z., Yuan, Y. F., Wang, F. H., Pelicano, H., Chiao, P. J., Huang, P., Xie, D., Li, Y. H., Ju, H. Q., & Xu, R. H. (2017). Long non-coding RNA UICLM promotes colorectal cancer liver metastasis by acting as a ceRNA for microRNA-215 to regulate ZEB2 expression. Theranostics., 7(19), 4836–4849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu, M., Chen, X., Lin, K., Zeng, K., Liu, X., Xu, X., Pan, B., Xu, T., Sun, L., He, B., Pan, Y., Sun, H., & Wang, S. (2019). lncRNA SNHG6 regulates EZH2 expression by sponging miR-26a/b and miR-214 in colorectal cancer. J Hematol Oncol, 12(1), 3.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Raab, M., Strebhardt, K., & Rudd, C. E. (2018). Immune adaptor protein SKAP1 (SKAP-55) forms homodimers as mediated by the N-terminal region. BMC Res Notes, 11(1), 869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. van Doorn, R., van Kester, M. S., Dijkman, R., Vermeer, M. H., Mulder, A. A., Szuhai, K., Knijnenburg, J., Boer, J. M., Willemze, R., & Tensen, C. P. (2009). Oncogenomic analysis of mycosis fungoides reveals major differences with Sezary syndrome. Blood., 113(1), 127–36.

    Article  PubMed  Google Scholar 

  17. Schulte, I., Batty, E. M., Pole, J. C., Blood, K. A., Mo, S., Cooke, S. L., Ng, C., Howe, K. L., Chin, S. F., Brenton, J. D., Caldas, C., Howarth, K. D., & Edwards, P. A. (2012). Structural analysis of the genome of breast cancer cell line ZR-75-30 identifies twelve expressed fusion genes. BMC Genomics, 13, 719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kosco, K. A., Cerignoli, F., Williams, S., Abraham, R. T., & Mustelin, T. (2008). SKAP55 modulates T cell antigen receptor-induced activation of the Ras-Erk-AP1 pathway by binding RasGRP1. Mol Immunol, 45(2), 510–22.

    Article  CAS  PubMed  Google Scholar 

  19. Shen, J., Li, L., Yang, T., Cheng, N., & Sun, G. (2019). Drug sensitivity screening and targeted pathway analysis reveal a multi-driver proliferative mechanism and suggest a strategy of combination targeted therapy for colorectal cancer cells. Molecules., 24, 3.

    Article  Google Scholar 

  20. Mokutani, Y., Uemura, M., Munakata, K., Okuzaki, D., Haraguchi, N., Takahashi, H., Nishimura, J., Hata, T., Murata, K., Takemasa, I., Mizushima, T., Doki, Y., Mori, M., & Yamamoto, H. (2016). Down-Regulation of microRNA-132 is Associated with Poor Prognosis of Colorectal Cancer. Ann Surg Oncol., 23(Suppl 5), 599–608.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Despotovic, J., Dragicevic, S., & Nikolic, A. (2021). Effects of chemotherapy for metastatic colorectal cancer on the TGF-β signaling and related miRNAs hsa-miR-17-5p, hsa-miR-21-5p and hsa-miR-93-5p. Cell Biochem Biophys, 79(4), 757–767.

  22. Gu, X., Jin, R., Mao, X., Wang, J., Yuan, J., & Zhao, G. (2018). Prognostic value of miRNA-181a/b in colorectal cancer: a meta-analysis. Biomark Med, 12(3), 299–308.

    Article  CAS  PubMed  Google Scholar 

  23. Baltruskeviciene, E., Schveigert, D., Stankevicius, V., Mickys, U., Zvirblis, T., Bublevic, J., Suziedelis, K., & Aleknavicius, E. (2017). Down-regulation of miRNA-148a and miRNA-625-3p in colorectal cancer is associated with tumor budding. BMC Cancer, 17(1), 607.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chen, K., Gan, J. X., Huang, Z. P., Liu, J., & Liu, H. P. (2021). Clinical significance of long noncoding RNA MNX1-AS1 in human cancers: a meta-analysis of cohort studies and bioinformatics analysis based on TCGA datasets. Bioengineered., 12(1), 875–885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheng, X. B., Zhang, T., Zhu, H. J., Ma, N., Sun, X. D., Wang, S. H., & Jiang, Y. (2021). Knockdown of lncRNA SNHG4 suppresses gastric cancer cell proliferation and metastasis by targeting miR-204-5p. Neoplasma, 68(3), 546–556.

  26. Jin, L., Pan, Y. L., Zhang, J., & Cao, P. G. (2021). LncRNA HOTAIR recruits SNAIL to inhibit the transcription of HNF4α and promote the viability, migration, invasion and EMT of colorectal cancer. Transl Oncol, 14(4), 101036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yan, T., Shen, C., Jiang, P., Yu, C., Guo, F., Tian, X., Zhu, X., Lu, S., Han, B., Zhong, M., Chen, J., Liu, Q., Chen, Y., Zhang, J., Hong, J., Chen, H., & Fang, J. Y. (2021). Risk SNP-induced lncRNA-SLCC1 drives colorectal cancer through activating glycolysis signaling. Signal Transduct Target Ther, 6(1), 70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, G., Ye, Q., Ning, S., Yang, Z., Chen, Y., Zhang, L., Huang, Y., Xie, F., Cheng, X., Chi, J., Lei, Y., Guo, R., & Han, J. (2021). LncRNA MEG3 promotes endoplasmic reticulum stress and suppresses proliferation and invasion of colorectal carcinoma cells through the MEG3/miR-103a-3p/PDHB ceRNA pathway. Neoplasma., 68(2), 362–374.

    Article  CAS  PubMed  Google Scholar 

  29. Xu, J., Wu, G., Zhao, Y., Han, Y., Zhang, S., Li, C., & Zhang, J. (2020). Long noncoding RNA DSCAM-AS1 facilitates colorectal cancer cell proliferation and migration via miR-137/Notch1 axis. J Cancer, 11(22), 6623–6632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zheng, X. Y., Cao, M. Z., Ba, Y., Li, Y. F., & Ye, J. L. (2020). LncRNA testis-specific transcript, Y-linked 15 (TTTY15) promotes proliferation, migration and invasion of colorectal cancer cells via regulating miR-29a-3p/DVL3 axis. Cancer Biomark, 31(1), 1–11.

  31. Zhang, X., Yao, J., Shi, H., Gao, B., & Zhang, L. (2019). LncRNA TINCR/microRNA-107/CD36 regulates cell proliferation and apoptosis in colorectal cancer via PPAR signaling pathway based on bioinformatics analysis. Biol Chem, 400(5), 663–675.

    Article  CAS  PubMed  Google Scholar 

  32. Sun, J., Hu, J., Wang, G., Yang, Z., Zhao, C., Zhang, X., & Wang, J. (2018). LncRNA TUG1 promoted KIAA1199 expression via miR-600 to accelerate cell metastasis and epithelial-mesenchymal transition in colorectal cancer. J Exp Clin Cancer Res, 37(1), 106.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Xie, J. J., Li, W. H., Li, X., Ye, W., & Shao, C. F. (2019). LncRNA MALAT1 promotes colorectal cancer development by sponging miR-363-3p to regulate EZH2 expression. J Biol Regul Homeost Agents, 33(2), 331–343.

    CAS  PubMed  Google Scholar 

  34. Yan, Z., Bi, M., Zhang, Q., Song, Y., & Hong, S. (2020). LncRNA TUG1 promotes the progression of colorectal cancer via the miR-138-5p/ZEB2 axis. Biosci Rep, 40, 6.

    Article  Google Scholar 

  35. le Petit, G. F. (1976). Medazepam pKa determined by spectrophotometric and solubility methods. J Pharm Sci, 65(7), 1094–5.

    Article  PubMed  Google Scholar 

  36. Lin, J., Zhang, Y., Zeng, X., Xue, C., & Lin, X. (2020). CircRNA CircRIMS acts as a microRNA sponge to promote gastric cancer metastasis. ACS Omega, 5(36), 23237–23246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Su, Y. K., Lin, J. W., Shih, J. W., Chuang, H. Y., Fong, I. H., Yeh, C. T., & Lin, C. M. (2020). Targeting BC200/miR218-5p signaling axis for overcoming temozolomide resistance and suppressing glioma stemness. Cells., 9, 8.

    Article  Google Scholar 

  38. Tan, J. J., Long, S. Z. & Zhang, T. (2020). Effects of LncRNA UNC5B-AS1 on adhesion, invasion and migration of lung cancer cells and its mechanism. Zhongguo Ying Yong Sheng Li Xue Za Zhi, 36(6), 622–627.

    PubMed  Google Scholar 

  39. Li, Y., Shi, B., Dong, F., Zhu, X., Liu, B., & Liu, Y. (2020). LncRNA KCNQ1OT1 facilitates the progression of bladder cancer by targeting MiR-218-5p/HS3ST3B1. Cancer Gene Ther, 28(3-4), 212–220.

  40. Li, L., Yu, H., & Ren, Q. (2020). MiR-218-5p suppresses the progression of retinoblastoma through targeting NACC1 and inhibiting the AKT/mTOR signaling pathway. Cancer Manag Res, 12, 6959–6967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jia, G., Wang, Y., Yu, Y., Li, Z., & Wang, X. (2020). Long non‑coding RNA NR2F1‑AS1 facilitates the osteosarcoma cell malignant phenotype via the miR‑485‑5p/miR‑218‑5p/BIRC5 axis. Oncol Rep, 44(4), 1583–1595.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, J., Zhong, Y., Cai, S., Zhou, P., & Yao, L. (2019). MicroRNA expression profiling in the colorectal normal-adenoma-carcinoma transition. Oncol Lett., 18(2), 2013–2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhou, X. G., Huang, X. L., Liang, S. Y., Tang, S. M., Wu, S. K., Huang, T. T., Mo, Z. N., & Wang, Q. Y. (2018). Identifying miRNA and gene modules of colon cancer associated with pathological stage by weighted gene co-expression network analysis. Onco Targets Ther, 11, 2815–2830.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Liu, M., Yin, K., Guo, X., Feng, H., Yuan, M., Liu, Y., Zhang, J., Guo, B., Wang, C., Zhou, G., Zhou, Z., Zhang, C. Y., & Chen, X. (2017). Diphthamide Biosynthesis 1 is a Novel Oncogene in Colorectal Cancer Cells and is Regulated by MiR-218-5p. Cell Physiol Biochem, 44(2), 505–514.

    Article  PubMed  Google Scholar 

  45. Chen, R., Wu, J., Lu, C., Yan, T., Qian, Y., Shen, H., Zhao, Y., Wang, J., Kong, P., & Zhang, X. (2020). Systematic transcriptome analysis reveals the inhibitory function of cinnamaldehyde in non-small cell lung cancer. Front Pharmacol, 11, 611060.

    Article  CAS  PubMed  Google Scholar 

  46. Hu, J., Chen, Y., Li, X., Miao, H., Li, R., Chen, D., & Wen, Z. (2019). THUMPD3-AS1 Is Correlated With Non-Small Cell Lung Cancer And Regulates Self-Renewal Through miR-543 And ONECUT2. Onco Targets Ther, 12, 9849–9860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhao, X., Bai, Z., Li, C., Sheng, C., & Li, H. (2020). Identification of a novel eight-lncRNA prognostic signature for HBV-HCC and analysis of their functions based on coexpression and ceRNA networks. Biomed Res Int, 2020, 8765461.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaodong Yang or Chungen Xing.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, Y., Wei, J., Wu, Y. et al. THUMPD3-AS1 facilitates cell growth and aggressiveness by the miR-218-5p/SKAP1 axis in colorectal cancer. Cell Biochem Biophys 80, 483–494 (2022). https://doi.org/10.1007/s12013-022-01074-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-022-01074-4

Keywords

Navigation