Skip to main content

Advertisement

Log in

Interleukin-4-induced FABP4 promotes lipogenesis in human skeletal muscle cells by activating the PPAR γ signaling pathway

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Chronic low back pain (CLBP) is a common symptom of lumbar degenerative disease. Degeneration of the lumbar paravertebral muscles causes a loss of muscle mass and strength, which is a vital factor causing CLBP and often accompanied by lipid infiltration. Tandem mass spectrometry (TMT) was used to identify differentially expressed proteins in lipid-infiltrated and normal muscles. The results show that fatty acid binding protein 4 (FABP4) participated in the peroxisome proliferator-activated receptor-γ (PPAR γ) signaling pathway as an up-regulated protein, which is related to lipogenesis in diverse cells. In addition, chronic inflammation is believed to be involved in lumbar muscle degeneration and lipogenesis, with interleukin-4 (IL-4) considered as the predominant contributor. In present study, we investigate the effect of FABP4 on lipogenesis in human skeletal muscle cells (HSMCs) stimulated by Interleukin-4 (IL-4) and explore the mechanistic basis. We found expression level of FABP4 in lipid-infiltrated muscles was significantly higher than that in normal muscles. Lipogenesis in HSMCs could be increased by IL-4 treatment, as well as by FABP4 overexpression. FABP4 inhibition suppressed IL-4-mediated lipogenesis in HSMCs, whereas the PPAR γ inhibitor alleviated lipogenesis in both IL-4-treated and FABP4-overexpressed HSMCs. Collectively, the results indicate that FABP4 induces lipogenesis in HSMCs stimulated with IL-4 via activating the PPAR γ signaling pathway. Our study offers a detailed perspective on the pathogenesis of muscle lipid infiltration and provides a potential target for the clinical treatment strategy of muscle lipid infiltration and CLBP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Faur, C., Patrascu, J. M., Haragus, H., & Anglitoiu, B. (2019). Correlation between multifidus lipidty atrophy and lumbar disc degeneration in low back pain. BMC Musculoskeletal Disorders, 20(1), 414 https://doi.org/10.1186/s12891-019-2786-7.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hamrick, M. W., McGee-Lawrence, M. E., & Frechette, D. M. (2016). Lipidty infiltration of skeletal muscle: mechanisms and comparisons with bone marrow adiposity. Frontiers in Endocrinology, 7, 69 https://doi.org/10.3389/fendo.2016.00069.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lee, S. H., Park, S. W., Kim, Y. B., Nam, T. K., & Lee, Y. S. (2017). The lipidty degeneration of lumbar paraspinal muscles on computed tomography scan according to age and disc level. The Spine Journal: Official Journal of the North American Spine Society, 17(1), 81–87. https://doi.org/10.1016/j.spinee.2016.08.001.

    Article  Google Scholar 

  4. Stanuszek A., Jędrzejek A., Gancarczyk-Urlik E., Kołodziej I., Pisarska-Adamczyk M., Milczarek O., et al. Preoperative paraspinal and psoas major muscle atrophy and paraspinal muscle lipidty degeneration as factors influencing the results of surgical treatment of lumbar disc disease. Archives of orthopaedic and trauma surgery. 2021. https://doi.org/10.1007/s00402-021-03754-x.

  5. Prasarn, M. L., Kostantinos, V., Coyne, E., Wright, J., & Rechtine, G. R. (2015). Does lumbar paraspinal muscle lipidty degeneration correlate with aerobic index and Oswestry disability index? Surgical Neurology International, 6(Suppl 4), S240–S243. https://doi.org/10.4103/2152-7806.156606.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yang, C. P., Shiau, M. Y., Lai, Y. R., Ho, K. T., Hsiao, C. W., & Chen, C. J., et al. (2018). Interleukin-4 boosts insulin-induced energy deposits by enhancing glucose uptake and lipogenesis in hepatocytes. Oxidative Medicine and Cellular Longevity, 2018, 6923187 https://doi.org/10.1155/2018/6923187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jun, I., Kim, B. R., Park, S. Y., Lee, H., Kim, J., & Kim, E. K., et al. (2020). Interleukin-4 stimulates lipogenesis in meibocytes by activating the STAT6/PPARgamma signaling pathway. The Ocular Surface, 18(4), 575–582. https://doi.org/10.1016/j.jtos.2020.04.015.

    Article  PubMed  Google Scholar 

  8. Black, S. M., Schott, M. E., Benson, B. A., Rutherford, M. S., Young, B. K., & Dalmasso, A. P. (2008). Interleukin-4 induces lipogenesis in porcine endothelial cells, which in turn is critical for induction of protection against complement-mediated injury. Transplantation Proceedings, 40(2), 638–640. https://doi.org/10.1016/j.transproceed.2008.02.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Szczepankiewicz, D., Skrzypski, M., Pruszynska-Oszmalek, E., Kolodziejski, P. A., Sassek, M., & Stefanska, B., et al. (2018). Interleukin 4 affects lipid metabolism and the expression of pro-inflammatory factors in mature rat adipocytes. Immunobiology, 223(11), 677–683. https://doi.org/10.1016/j.imbio.2018.07.014.

    Article  CAS  PubMed  Google Scholar 

  10. Al-Khalili, L., Krämer, D., Wretenberg, P., & Krook, A. (2004). Human skeletal muscle cell differentiation is associated with changes in myogenic markers and enhanced insulin-mediated MAPK and PKB phosphorylation. Acta Physiologica Scandinavica, 180(4), 395–403. https://doi.org/10.1111/j.1365-201X.2004.01259.x.

    Article  CAS  PubMed  Google Scholar 

  11. Wu, W., Sun, Y., Zhao, C., Zhao, C., Chen, X., & Wang, G., et al. (2016). Lipogenesis in myoblasts and its regulation of CTRP6 by AdipoR1/Erk/PPARgamma signaling pathway. Acta Biochim Biophys Sin (Shanghai), 48(6), 509–519. https://doi.org/10.1093/abbs/gmw032.

    Article  CAS  Google Scholar 

  12. Jun, I., Park, H. S., Piao, H., Han, J. W., An, M. J., & Yun, B. G., et al. (2017). ANO9/TMEM16J promotes tumourigenesis via EGFR and is a novel therapeutic target for pancreatic cancer. British Journal of Cancer, 117(12), 1798–1809. https://doi.org/10.1038/bjc.2017.355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jun, I., Lee, J. S., Lee, J. H., Lee, C. S., Choi, S. I., & Gee, H. Y., et al. (2017). Adult-onset vitelliform macular dystrophy caused by BEST1 p.Ile38Ser mutation is a mild form of best vitelliform macular dystrophy. Scientific Reports, 7(1), 9146 https://doi.org/10.1038/s41598-017-09629-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu J., Tang T., Wang G. D., Liu B. (2019). LncRNA-H19 promotes hepatic lipogenesis by directly regulating miR-130a/PPARγ axis in non-alcoholic lipidty liver disease. Bioscience Reports. 39(7). https://doi.org/10.1042/bsr20181722.

  15. Shinohara, S., & Fujimori, K. (2020). Promotion of lipogenesis by PPARγ-activated FXR expression in adipocytes. Biochemical and Biophysical Research Communications, 527(1), 49–55. https://doi.org/10.1016/j.bbrc.2020.04.075.

    Article  CAS  PubMed  Google Scholar 

  16. Li, Z., Xu, G., Qin, Y., Zhang, C., Tang, H., & Yin, Y., et al. (2014). Ghrelin promotes hepatic lipogenesis by activation of mTOR-PPARγ signaling pathway. Proceedings of the National Academy of Sciences, 111(36), 13163–13168. https://doi.org/10.1073/pnas.1411571111.

    Article  CAS  Google Scholar 

  17. Moratal, C., Raffort, J., Arrighi, N., Rekima, S., Schaub, S., & Dechesne, C. A., et al. (2018). IL-1β- and IL-4-polarized macrophages have opposite effects on lipogenesis of intramuscular fibro-adipogenic progenitors in humans. Scientific Reports, 8(1), 17005 https://doi.org/10.1038/s41598-018-35429-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sztalryd, C., & Brasaemle, D. L. (2017). The perilipin family of lipid droplet proteins: Gatekeepers of intracellular lipolysis. Biochimica et Biophysica Acta Molecular and Cell Biology of Lipids, 1862(10), 1221–1232. https://doi.org/10.1016/j.bbalip.2017.07.009.

    Article  CAS  PubMed  Google Scholar 

  19. Maeda, N., Funahashi, T., Matsuzawa, Y., & Shimomura, I. (2020). Adiponectin, a unique adipocyte-derived factor beyond hormones. Atherosclerosis., 292, 1–9. https://doi.org/10.1016/j.atherosclerosis.2019.10.021.

    Article  CAS  PubMed  Google Scholar 

  20. Sun, F., Du, J., Li, H., Hao, S., Zhao, G., & Lu, F. (2020). FABP4 inhibitor BMS309403 protects against hypoxia-induced H9c2 cardiomyocyte apoptosis through attenuating endoplasmic reticulum stress. Journal of Cellular and Molecular Medicine, 24(19), 11188–11197. https://doi.org/10.1111/jcmm.15666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Seargent, J. M., Yates, E. A., & Gill, J. H. (2004). GW9662, a potent antagonist of PPARgamma, inhibits growth of breast tumour cells and promotes the anticancer effects of the PPARgamma agonist rosiglitazone, independently of PPARgamma activation. British Journal of Pharmacology, 143(8), 933–937. https://doi.org/10.1038/sj.bjp.0705973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Battié, M. C., Joshi, A. B., & Gibbons, L. E. (2019). Degenerative disc disease: what is in a name? Spine, 44(21), 1523–1529. https://doi.org/10.1097/brs.0000000000003103.

    Article  PubMed  Google Scholar 

  23. Crawford, R. J., Volken, T., Valentin, S., Melloh, M., & Elliott, J. M. (2016). Rate of lumbar paravertebral muscle lipid infiltration versus spinal degeneration in asymptomatic populations: an age-aggregated cross-sectional simulation study. Scoliosis and Spinal Disorders, 11, 21 https://doi.org/10.1186/s13013-016-0080-0.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kim, W. J., Shin, H. M., Lee, J. S., Song, D. G., Lee, J. W., & Chang, S. H., et al. (2021). Sarcopenia and back muscle degeneration as risk factors for degenerative adult spinal deformity with sagittal imbalance and degenerative spinal disease: a comparative study. World Neurosurgery, 148, e547–e555. https://doi.org/10.1016/j.wneu.2021.01.053.

    Article  PubMed  Google Scholar 

  25. Ohtori, S., Orita, S., Yamauchi, K., Eguchi, Y., Aoki, Y., & Nakamura, J., et al. (2016). Classification of chronic back muscle degeneration after spinal surgery and its relationship with low back pain. Asian Spine Journal, 10(3), 516–521. https://doi.org/10.4184/asj.2016.10.3.516.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ho, I. C., & Miaw, S. C. (2016). Regulation of IL-4 expression in immunity and diseases. Advances in Experimental Medicine and Biology, 941, 31–77. https://doi.org/10.1007/978-94-024-0921-5_3.

    Article  CAS  PubMed  Google Scholar 

  27. Le Floc’h, A., Allinne, J., Nagashima, K., Scott, G., Birchard, D., & Asrat, S., et al. (2020). Dual blockade of IL-4 and IL-13 with dupilumab, an IL-4Rα antibody, is required to broadly inhibit type 2 inflammation. Allergy, 75(5), 1188–1204. https://doi.org/10.1111/all.14151.

    Article  CAS  PubMed  Google Scholar 

  28. Horsley, V., Jansen, K. M., Mills, S. T., & Pavlath, G. K. (2003). IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell, 113(4), 483–494. https://doi.org/10.1016/s0092-8674(03)00319-2.

    Article  CAS  PubMed  Google Scholar 

  29. Possidonio, A. C., Senna, M. L., Portilho, D. M., Pontes Soares, C., da Silva Sampaio, L., & Einicker-Lamas, M., et al. (2011). α-Cyclodextrin enhances myoblast fusion and muscle differentiation by the release of IL-4. Cytokine, 55(2), 280–287. https://doi.org/10.1016/j.cyto.2011.04.018.

    Article  CAS  PubMed  Google Scholar 

  30. Bao, K., & Reinhardt, R. L. (2015). The differential expression of IL-4 and IL-13 and its impact on type-2 immunity. Cytokine., 75(1), 25–37. https://doi.org/10.1016/j.cyto.2015.05.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Walenna, N. F., Kurihara, Y., Chou, B., Ishii, K., Soejima, T., & Itoh, R., et al. (2018). Chlamydia pneumoniae exploits adipocyte lipid chaperone FABP4 to facilitate lipid mobilization and intracellular growth in murine adipocytes. Biochemical and Biophysical Research Communications, 495(1), 353–359. https://doi.org/10.1016/j.bbrc.2017.11.005.

    Article  CAS  PubMed  Google Scholar 

  32. Qiao, Y., Liu, L., Yin, L., Xu, L., Tang, Z., & Qi, Y., et al. (2019). FABP4 contributes to renal interstitial fibrosis via mediating inflammation and lipid metabolism. Cell Death and Disease, 10(6), 382 https://doi.org/10.1038/s41419-019-1610-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu, Z. W., Fan, H. L., Liu, X. F., Ding, X. B., Wang, T., & Sui, G. N., et al. (2015). Overexpression of the A-FABP gene facilitates intermuscular lipid deposition in transgenic mice. Genetics and Molecular Research, 14(1), 2742–2749. https://doi.org/10.4238/2015.March.31.4.

    Article  CAS  PubMed  Google Scholar 

  34. Wang, Y., Liu, W., Hang, C., Du, Y., Chen, Y., & Xing, J., et al. (2019). Association of A-FABP gene polymorphism and mRNA expression with intramuscular lipid content (IMF) in Baicheng-You chicken. Journal of Animal Physiology Animal Nutrition, 103(5), 1447–1452. https://doi.org/10.1111/jpn.13150.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, L., Zhao, Y., Ning, Y., Wang, H., & Zan, L. (2017). Ectopical expression of FABP4 gene can induce bovine muscle-derived stem cells lipogenesis. Biochemical and Biophysical Research Communications, 482(2), 352–358. https://doi.org/10.1016/j.bbrc.2016.11.067.

    Article  CAS  PubMed  Google Scholar 

  36. Kim, S. W., Xie, Y., Nguyen, P. Q., Bui, V. T., Huynh, K., & Kang, J. S., et al. (2018). PPARγ regulates meibocyte differentiation and lipid synthesis of cultured human meibomian gland epithelial cells (hMGEC). The Ocular Surface, 16(4), 463–469. https://doi.org/10.1016/j.jtos.2018.07.004.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jester, J. V., Potma, E., & Brown, D. J. (2016). PPARγ regulates mouse meibocyte differentiation and lipid synthesis. The Ocular Surface, 14(4), 484–494. https://doi.org/10.1016/j.jtos.2016.08.001.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lamas Bervejillo, M., Bonanata, J., Franchini, G. R., Richeri, A., Marqués, J. M., & Freeman, B. A., et al. (2020). A FABP4-PPARγ signaling axis regulates human monocyte responses to electrophilic lipidty acid nitroalkenes. Redox Biology, 29, 101376 https://doi.org/10.1016/j.redox.2019.101376.

    Article  CAS  PubMed  Google Scholar 

  39. Yang, X. L., Mi, J. H., & Dong, Q. (2021). FABP4 alleviates endoplasmic reticulum stress-mediated ischemia-reperfusion injury in PC12 cells via regulation of PPARγ. Experimental and Therapeutic Medicine, 21(3), 181 https://doi.org/10.3892/etm.2021.9612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ayers, S. D., Nedrow, K. L., Gillilan, R. E., & Noy, N. (2007). Continuous nucleocytoplasmic shuttling underlies transcriptional activation of PPARgamma by FABP4. Biochemistry, 46(23), 6744–6752. https://doi.org/10.1021/bi700047a.

    Article  CAS  PubMed  Google Scholar 

  41. Boss, M., Kemmerer, M., Brüne, B., & Namgaladze, D. (2015). FABP4 inhibition suppresses PPARγ activity and VLDL-induced foam cell formation in IL-4-polarized human macrophages. Atherosclerosis., 240(2), 424–430. https://doi.org/10.1016/j.atherosclerosis.2015.03.042.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the assistance of Dr. Chuan-dong Lang in the preparation of this article.

Author contributions

Conceived and designed the experiments: X.-W.W., Y.-J.S.; Performed the experiments: X.-W.W., Y.-J.S.; Statistical analysis: X.-W.W., X.C.; Wrote the paper: X.-W.W., Y.-J.S., W.-Z.Z. All authors read and approved the final manuscript.

Funding

This research was supported by the Fundamental Research Funds for the Central Universities (WK9110000189).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-zhi Zhang.

Ethics declarations

Conflict of Interest

The authors declare no competing interest.

Ethics Approval and Consent to Participate

Our study was approved by the Ethics Committee of the Provincial Hospital Affiliated to Anhui Medical University and all experiments conformed to the Declaration of Helsinki.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Xw., Sun, Yj., Chen, X. et al. Interleukin-4-induced FABP4 promotes lipogenesis in human skeletal muscle cells by activating the PPAR γ signaling pathway. Cell Biochem Biophys 80, 355–366 (2022). https://doi.org/10.1007/s12013-022-01063-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-022-01063-7

Keywords

Navigation