Skip to main content
Log in

Hyperoxia-induced S1P1 signaling reduced angiogenesis by suppression of TIE-2 leading to experimental bronchopulmonary dysplasia

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Introduction

We have earlier shown that hyperoxia (HO)-induced sphingosine kinase 1 (SPHK1)/sphingosine-1-phosphate (S1P) signaling contribute to bronchopulmonary dysplasia (BPD). S1P acts through G protein-coupled receptors, S1P1 through S1P5. Further, we noted that heterozygous deletion of S1pr1 ameliorated the HO-induced BPD in the murine model. The mechanism by which S1P1 signaling contributes to HO-induced BPD was explored.

Methods

S1pr1+/+ and S1pr1+/− mice pups were exposed to either room air (RA) or HO (75% oxygen) for 7 days from PN 1–7. Lung injury and alveolar simplification was evaluated. Lung protein expression was determined by Western blotting and immunohistochemistry (IHC). In vitro experiments were performed using human lung microvascular endothelial cells (HLMVECs) with S1P1 inhibitor, NIBR0213 to interrogate the S1P1 signaling pathway.

Results

HO increased the expression of S1pr1 gene as well as S1P1 protein in both neonatal lungs and HLMVECs. The S1pr1+/− neonatal mice showed significant protection against HO-induced BPD which was accompanied by reduced inflammation markers in the bronchoalveolar lavage fluid. HO-induced reduction in ANG-1, TIE-2, and VEGF was rescued in S1pr1+/ mouse, accompanied by an improvement in the number of arterioles in the lung. HLMVECs exposed to HO increased the expression of KLF-2 accompanied by reduced expression of TIE-2, which was reversed with S1P1 inhibition.

Conclusion

HO induces S1P1 followed by reduced expression of angiogenic factors. Reduction of S1P1 signaling restores ANG-1/ TIE-2 signaling leading to improved angiogenesis and alveolarization thus protecting against HO-induced neonatal lung injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Davis, J. M. (2002). Role of oxidant injury in the pathogenesis of neonatal lung disease. Acta Paediatrica, 91(437), 23–25. https://doi.org/10.1111/j.1651-2227.2002.tb00156.x.

    Article  PubMed  Google Scholar 

  2. Asikainen, T. M., & White, C. W. (2004). Pulmonary antioxidant defenses in the preterm newborn with respiratory distress and bronchopulmonary dysplasia in evolution: Implications for antioxidant therapy. Antioxidants & Redox Signaling, 6(1), 155–167. https://doi.org/10.1089/152308604771978462.

    Article  CAS  Google Scholar 

  3. Domm, W., Misra, R. S., & O’Reilly, M. A. (2015). Affect of early life oxygen exposure on proper lung development and response to respiratory viral infections. Frontiers in Medicine, 2, 55. https://doi.org/10.3389/fmed.2015.00055.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Thébaud, B., Ladha, F., Michelakis, E. D., Sawicka, M., Thurston, G., Eaton, F., & Archer, S. L. (2005). Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury: Evidence that angiogenesis participates in alveolarization. Circulation, 112(16), 2477–2486. https://doi.org/10.1161/CIRCULATIONAHA.105.541524.

    Article  CAS  PubMed  Google Scholar 

  5. Ha, A. W., Sudhadevi, T., Ebenezer, D. L., Fu, P., Berdyshev, E. V., Ackerman, S. J., & Harijith, A. (2020). Neonatal therapy with PF543, a sphingosine kinase 1 inhibitor, ameliorates hyperoxia-induced airway remodeling in a murine model of bronchopulmonary dysplasia. American Journal of Physiology Lung Cellular and Molecular Physiology, 319(3), L497–L512. https://doi.org/10.1152/ajplung.00169.2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zysman-Colman, Z., Tremblay, G. M., Bandeali, S., & Landry, J. S. (2013). Bronchopulmonary dysplasia - trends over three decades. Paediatrics & Child Health, 18(2), 86–90. https://doi.org/10.1093/pch/18.2.86.

    Article  Google Scholar 

  7. O’Reilly, M., Sozo, F., & Harding, R. (2013). Impact of preterm birth and bronchopulmonary dysplasia on the developing lung: long-term consequences for respiratory health. Clinical and Experimental Pharmacology & Physiology, 40(11), 765–773. https://doi.org/10.1111/1440-1681.12068.

    Article  CAS  Google Scholar 

  8. Sudhadevi, T., Ha, A. W., Ebenezer, D. L., Fu, P., Putherickal, V., Natarajan, V., & Harijith, A. (2020). Advancements in understanding the role of lysophospholipids and their receptors in lung disorders including bronchopulmonary dysplasia. Biochimica Et Biophysica Acta. Molecular and Cell Biology of Lipids, 1865(7), 158685. https://doi.org/10.1016/j.bbalip.2020.158685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stoll, B. J., Hansen, N. I., Bell, E. F., Shaκaran, S., Laptook, A. R., & Walsh, M. C., Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. (2010). Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics, 126(3), 443–456. https://doi.org/10.1542/peds.2009-2959.

    Article  PubMed  Google Scholar 

  10. Landry, J. S., & Menzies, D. (2011). Occurrence and severity of bronchopulmonary dysplasia and respiratory distress syndrome after a preterm birth. Pediatrics & Child Health, 16(7), 399–403 https://pubmed.ncbi.nlm.nih.gov/22851893/.

  11. Weisman, L. E. (2003). Populations at risk for developing respiratory syncytial virus and risk factors for respiratory syncytial virus severity: Infants with predisposing conditions. The Pediatric Infectious Disease Journal, 22(2 Suppl), S33–S37. https://doi.org/10.1097/01.inf.0000053883.08663.e5. discussion S37–S39.

    Article  PubMed  Google Scholar 

  12. Ng, D. K., Lau, W. Y., & Lee, S. L. (2000). Pulmonary sequelae in long-term survivors of bronchopulmonary dysplasia. Pediatrics International: Official Journal of the Japan Pediatric Society, 42(6), 603–607. https://doi.org/10.1046/j.1442-200x.2000.01314.x.

    Article  CAS  Google Scholar 

  13. Bourbon, J., Boucherat, O., Chailley-Heu, B., & Delacourt, C. (2005). Control mechanisms of lung alveolar development and their disorders in bronchopulmonary dysplasia. Pediatric Research, 57(5 Pt 2), 38R–46R. https://doi.org/10.1203/01.PDR.0000159630.35883.BE.

    Article  PubMed  Google Scholar 

  14. Ladha, F., Bonnet, S., Eaton, F., Hashimoto, K., Korbutt, G., & Thébaud, B. (2005). Sildenafil improves alveolar growth and pulmonary hypertension in hyperoxia-induced lung injury. American Journal of Respiratory and Critical Care Medicine, 172(6), 750–756. https://doi.org/10.1164/rccm.200503-510OC.

    Article  PubMed  Google Scholar 

  15. Rosen, H., Stevens, R. C., Hanson, M., Roberts, E., & Oldstone, M. B. A. (2013). Sphingosine-1-phosphate and its receptors: structure, signaling, and influence. Annual Review of Biochemistry, 82, 637–662. https://doi.org/10.1146/annurev-biochem-062411-130916.

    Article  CAS  PubMed  Google Scholar 

  16. Harijith, A., Pendyala, S., Reddy, N. M., Bai, T., Usatyuk, P. V., Berdyshev, E., & Natarajan, V. (2013). Sphingosine kinase 1 deficiency confers protection against hyperoxia-induced bronchopulmonary dysplasia in a murine model: Role of S1P signaling and Nox proteins. The American Journal of Pathology, 183(4), 1169–1182. https://doi.org/10.1016/j.ajpath.2013.06.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Harijith, A., Pendyala, S., Ebenezer, D. L., Ha, A. W., Fu, P., Wang, Y.-T., & Natarajan, V. (2016). Hyperoxia-induced p47phox activation and ROS generation is mediated through S1P transporter Spns2, and S1P/S1P1&2 signaling axis in lung endothelium. American Journal of Physiology Lung Cellular and Molecular Physiology, 311(2), L337–L351. https://doi.org/10.1152/ajplung.00447.2015.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jung, B., Obinata, H., Galvani, S., Mendelson, K., Ding, B., Skoura, A., & Hla, T. (2012). Flow-regulated endothelial S1P receptor-1 signaling sustains vascular development. Developmental Cell, 23(3), 600–610. https://doi.org/10.1016/j.devcel.2012.07.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bae, J.-S., & Rezaie, A. R. (2010). Thrombin upregulates the angiopoietin-Tie2 Axis: endothelial protein C receptor occupancy prevents the thrombin mobilization of angiopoietin 2 and P-selectin from Weibel-Palade bodies. Journal of Thrombosis and Haemostasis, 8(5), 1107–1115. https://doi.org/10.1111/j.1538-7836.2010.03812.x.

    Article  CAS  PubMed  Google Scholar 

  20. Ben Shoham, A., Malkinson, G., Krief, S., Shwartz, Y., Ely, Y., Ferrara, N., & Zelzer, E. (2012). S1P1 inhibits sprouting angiogenesis during vascular development. Development, 139(20), 3859–3869. https://doi.org/10.1242/dev.078550.

    Article  CAS  PubMed  Google Scholar 

  21. Liu, Y., Wada, R., Yamashita, T., Mi, Y., Deng, C. X., Hobson, J. P., & Proia, R. L. (2000). Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. The Journal of Clinical Investigation, 106(8), 951–961. https://doi.org/10.1172/JCI10905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sun, X., Ma, S.-F., Wade, M. S., Flores, C., Pino-Yanes, M., Moitra, J., & Garcia, J. G. N. (2010). Functional variants of the sphingosine-1-phosphate receptor 1 gene associate with asthma susceptibility. The Journal of Allergy and Clinical Immunology, 126(2), 241–249. https://doi.org/10.1016/j.jaci.2010.04.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tibboel, J., Reiss, I., de Jongste, J. C., & Post, M. (2014). Sphingolipids in lung growth and repair. Chest, 145(1), 120–128. https://doi.org/10.1378/chest.13-0967.

    Article  CAS  PubMed  Google Scholar 

  24. Hendricks-Muñoz, K. D., Xu, J., & Voynow, J. A. (2018). Tracheal aspirate VEGF and sphingolipid metabolites in the preterm infant with later development of bronchopulmonary dysplasia. Pediatric Pulmonology, 53(8), 1046–1052. https://doi.org/10.1002/ppul.24022.

    Article  PubMed  Google Scholar 

  25. Yamakawa, D., Kidoya, H., Sakimoto, S., Jia, W., Naito, H., & Takakura, N. (2013). Ligand-independent Tie2 dimers mediate kinase activity stimulated by high dose angiopoietin-1. The Journal of Biological Chemistry, 288(18), 12469–12477. https://doi.org/10.1074/jbc.M112.433979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Carlson, C. M., Endrizzi, B. T., Wu, J., Ding, X., Weinreich, M. A., Walsh, E. R., & Jameson, S. C. (2006). Kruppel-like factor 2 regulates thymocyte and T-cell migration. Nature, 442(7100), 299–302. https://doi.org/10.1038/nature04882.

    Article  CAS  PubMed  Google Scholar 

  27. Sun, X., Mathew, B., Sammani, S., Jacobson, J. R., & Garcia, J. G. N. (2017). Simvastatin-induced sphingosine 1−phosphate receptor 1 expression is KLF2-dependent in human lung endothelial cells. Pulmonary Circulation, 7(1), 117–125. https://doi.org/10.1177/2045893217701162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fang, X., Neyrinck, A. P., Matthay, M. A., & Lee, J. W. (2010). Allogeneic human mesenchymal stem cells restore epithelial protein permeability in cultured human alveolar type II cells by secretion of angiopoietin-1. The Journal of Biological Chemistry, 285(34), 26211–26222. https://doi.org/10.1074/jbc.M110.119917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Syed, M., Das, P., Pawar, A., Aghai, Z. H., Kaskinen, A., Zhuang, Z. W., & Bhandari, V. (2017). Hyperoxia causes miR-34a-mediated injury via angiopoietin-1 in neonatal lungs. Nature Communications, 8(1), 1173. https://doi.org/10.1038/s41467-017-01349-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grzenda, A., Shannon, J., Fisher, J., & Arkovitz, M. S. (2013). Timing and expression of the angiopoietin-1-Tie-2 pathway in murine lung development and congenital diaphragmatic hernia. Disease Models & Mechanisms, 6(1), 106–114. https://doi.org/10.1242/dmm.008821.

    Article  CAS  Google Scholar 

  31. Shah, D., Sandhu, K., Das, P., Aghai, Z. H., Andersson, S., Pryhuber, G., & Bhandari, V. (2020). miR-184 mediates hyperoxia-induced injury by targeting cell death and angiogenesis signalling pathways in the developing lung. The European Respiratory Journal. https://doi.org/10.1183/13993003.01789-2019.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bhandari, V., Choo-Wing, R., Lee, C. G., Zhu, Z., Nedrelow, J. H., Chupp, G. L., & Elias, J. A. (2006). Hyperoxia causes angiopoietin 2–mediated acute lung injury and necrotic cell death. Nature Medicine, 12(11), 1286–1293. https://doi.org/10.1038/nm1494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jones, N., Iljin, K., Dumont, D. J., & Alitalo, K. (2001). Tie receptors: New modulators of angiogenic and lymphangiogenic responses. Nature Reviews Molecular Cell Biology, 2(4), 257–267. https://doi.org/10.1038/35067005.

    Article  CAS  PubMed  Google Scholar 

  34. Peters, K. G., Kontos, C. D., Lin, P. C., Wong, A. L., Rao, P., Huang, L., & Sankar, S. (2004). Functional significance of Tie2 signaling in the adult vasculature. Recent Progress in Hormone Research, 59, 51–71. https://doi.org/10.1210/rp.59.1.51.

    Article  CAS  PubMed  Google Scholar 

  35. Fujinaga, H., Baker, C. D., Ryan, S. L., Markham, N. E., Seedorf, G. J., Balasubramaniam, V., & Abman, S. H. (2009). Hyperoxia disrupts vascular endothelial growth factor-nitric oxide signaling and decreases growth of endothelial colony-forming cells from preterm infants. American Journal of Physiology Lung Cellular and Molecular Physiology, 297(6), L1160–L1169. https://doi.org/10.1152/ajplung.00234.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hosford, G. E., & Olson, D. M. (2003). Effects of hyperoxia on VEGF, its receptors, and HIF-2alpha in the newborn rat lung. American Journal of Physiology Lung Cellular and Molecular Physiology, 285(1), L161–L168. https://doi.org/10.1152/ajplung.00285.2002.

    Article  CAS  PubMed  Google Scholar 

  37. Been, J. V., Debeer, A., van Iwaarden, J. F., Kloosterboer, N., Passos, V. L., Naulaers, G., & Zimmermann, L. J. (2010). Early alterations of growth factor patterns in bronchoalveolar lavage fluid from preterm infants developing bronchopulmonary dysplasia. Pediatric Research, 67(1), 83–89. https://doi.org/10.1203/PDR.0b013e3181c13276.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the assistance of Research Resources Center histology core of University of Illinois, Chicago, and that of University of Chicago in the processing of lung tissue, including IHC and image processing. We have used biorender.com to create the illustrations.

Funding

This work was supported in part by R01HD090887-01A1 from Eunice Kennedy Shriver National Institute of Child Health and Human Development and by Transitional Grant # 18TPA34230095 from American Heart Association to AH. No role was played by the funding body in the design of the study, collection, analysis and interpretation of data, or in writing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anantha Harijith.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudhadevi, T., Jafri, A., Ha, A.W. et al. Hyperoxia-induced S1P1 signaling reduced angiogenesis by suppression of TIE-2 leading to experimental bronchopulmonary dysplasia. Cell Biochem Biophys 79, 561–573 (2021). https://doi.org/10.1007/s12013-021-01014-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-021-01014-8

Key words

Navigation