Skip to main content

Advertisement

Log in

Sec62 promotes pro-angiogenesis of hepatocellular carcinoma cells under hypoxia

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

This study aimed to investigate the underlying molecular pathogenic mechanism of Sec62 in hepatocellular carcinoma (HCC). Microarray analysis was conducted to profile the global gene expression in the HCC cell line Huh7 cells transfected with Sec62high vs. NC and Sec62low vs. NC. Ingenuity pathway analysis and gene set enrichment analysis were used to perform Sec62-related signaling pathway analysis from screened differentially expressed genes (DEGs). A protein-protein interaction network was constructed. Experimental validation of the expression of key DEGs was conducted. Hypoxia-induced tube formation was undertaken to investigate the role of Sec62 in angiogenesis. A total of 74 intersected DEGs were identified from Huh7 cells with Sec62high vs. NC and Sec62low vs. NC. Among them, 65 DEGs were correlated with the expression of Sec62. The P53 signaling pathway was found to be enriched in Huh7 cells with Sec62high vs. NC, while the acute phase response signaling pathway was enriched in Huh7 cells with Sec62low vs. NC. DEGs, such as serine protease inhibitor E (SERPINE) and tumor necrosis factor receptor superfamily, member 11B (TNFRSF11B), were not only identified as the lead genes of these enriched pathways, but were also found to be closely related to Sec62. Moreover, knockdown of Sec62 decreased the expression of SERPINE1 (plasminogen activator inhibitor type 1 (PAI-1)) and TNFRSF11B, whereas overexpression of Sec62 had the opposite effects. In addition, knockdown of Sec62 inhibited hypoxia-induced tube formation via PAI-1. Sec62 promoted pro-angiogenesis of HCC under hypoxia by regulating PAI-1, and it may be a crucial angiogenic switch in HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets used during the present study are available from the corresponding author upon reasonable request.

Abbreviations

hepatocellular carcinoma:

HCC

ingenuity pathway analysis:

IPA

gene set enrichment analysis:

GSEA

differentially expressed genes:

DEGs

protein-protein interaction:

PPI

serine protease inhibitor E:

SERPINE

tumor necrosis factor receptor superfamily member 11B:

TNFRSF11B

unfolded protein response:

UPR

endoplasmic reticulum:

ER

fold-change:

FC

polymerase chain reaction:

PCR

quantitative PCR:

qPCR

negative control:

NC

standardized enrichment score:

NES

plasminogen activator inhibitor type 1:

PAI-1

glyceraldehyde-3-phosphate dehydrogenase:

GAPDH

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A. & & Jemal, A. (2018). GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal of Clinicians, 68, 394–424. https://doi.org/10.3322/caac.21492.

    Article  Google Scholar 

  2. Matsuura, Y., Wada, H., Eguchi, H., Gotoh, K., Kobayashi, S., Kinoshita, M., Kubo, M., Hayashi, K., Iwagami, Y., Yamada, D., Asaoka, T., Noda, T., Kawamoto, K., Takeda, Y., Tanemura, M., Umeshita, K., Doki, Y., & Mori, M. (2019). Exosomal miR-155 derived from hepatocellular carcinoma cells under hypoxia promotes angiogenesis in endothelial cells. Digestive Diseases and Sciences, 64, 792–802. https://doi.org/10.1007/s10620-018-5380-1.

    Article  CAS  PubMed  Google Scholar 

  3. Moraes, A. O., do Nascimento, E. A., Zubiolo, T. F. M., de Paula, M. F. M., Brito, A. F. B., Petta, B. F. V., Perini, G. M., & Martins, D. R. (2019). Transcatheter arterial chemoembolization of hepatocellular carcinoma in a patient with celiac trunk occlusion: a therapeutic challenge. Journal of Vascular Surgery, 18, e20180090 https://doi.org/10.1590/1677-5449.180090.

    Article  Google Scholar 

  4. Liu, J., Xie, S., Duan, X., Chen, J., Zhou, X., Li, Y., Li, Z., & Han, X. (2020). Assessment of efficacy and safety of the transcatheter arterial chemoembolization with or without apatinib in the treatment of large hepatocellular carcinoma. Cancer Chemotherapy and Pharmacology, 85, 69–76. https://doi.org/10.1007/s00280-019-04004-z.

    Article  CAS  PubMed  Google Scholar 

  5. Morse, M. A., Sun, W., Kim, R., He, A. R., Abada, P. B., Mynderse, M., & Finn, R. S. (2019). The role of angiogenesis in hepatocellular carcinoma. Clinical Cancer Research, 25, 912–920. https://doi.org/10.1158/1078-0432.CCR-18-1254.

    Article  CAS  PubMed  Google Scholar 

  6. Li, X., Zhang, K., & Li, Z. (2011). Unfolded protein response in cancer: the Physician’s perspective. Journal of Hematology & Oncology, 4, 8.

    Article  CAS  Google Scholar 

  7. Sano, R., & Reed, J. C. (2013). ER stress-induced cell death mechanisms. Biochimica Et Biophysica Acta Molecular Cell Research, 1833, 3460–3470.

    Article  CAS  Google Scholar 

  8. Chipurupalli, S., Kannan, E., Tergaonkar, V., D’Andrea, R. & & Robinson, N. (2019). Hypoxia induced ER stress response as an adaptive mechanism in cancer. International Journal of Molecular Sciences, 20, 749.

    Article  CAS  Google Scholar 

  9. Tyedmers, J., Lerner, M., Bies, C., Dudek, J., Skowronek, M.H., Haas, I.G., Heim, N., Nastainczyk, W., Volkmer, J. & Zimmermann, R. (2000). Homologs of the yeast Sec complex subunits Sec62p and Sec63p are abundant proteins in dog pancreas microsomes. Proceedings of the National Academy of Sciences, 97, 7214–7219.

    Article  CAS  Google Scholar 

  10. Dudek, J., Greiner, M., Müller, A., Hendershot, L.M., Kopsch, K., Nastainczyk, W. & Zimmermann, R. (2005). ERj1p has a basic role in protein biogenesis at the endoplasmic reticulum. Nature Structural & Molecular Biology, 12, 1008–1014.

    Article  CAS  Google Scholar 

  11. Muller, L., De Escauriaza, M. D., Lajoie, P., Theis, M., Jung, M., Muller, A., Burgard, C., Greiner, M., Snapp, E. L., & Dudek, J. (2010). Evolutionary gain of function for the ER membrane protein Sec62 from yeast to humans. Molecular Biology of the Cell, 21, 691.

    Article  Google Scholar 

  12. Hu, S., Ye, H., Cui, Y., & Jiang, L. W. (2020). AtSec62 is critical for plant development and is involved in ER-phagy in Arabidopsis thaliana. Journal Of Integrative Plant Biology, 62, 181–200. https://doi.org/10.1111/jipb.12872.

    Article  CAS  PubMed  Google Scholar 

  13. Linxweiler, M., Schorr, S., Schauble, N., Jung, M., Linxweiler, J., Langer, F., Schafers, H. J., Cavalie, A., Zimmermann, R., & Greiner, M. (2013). Targeting cell migration and the endoplasmic reticulum stress response with calmodulin antagonists: a clinically tested small molecule phenocopy of SEC62 gene silencing in human tumor cells. BMC Cancer, 13, 574. https://doi.org/10.1186/1471-2407-13-574[pii].

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jung, V., Kindich, R., Kamradt, J., Jung, M., Muller, M., Schulz, W. A., Engers, R., Unteregger, G., Stockle, M., Zimmermann, R., & Wullich, B. (2006). Genomic and expression analysis of the 3q25-q26 amplification unit reveals TLOC1/SEC62 as a probable target gene in prostate cancer. Molecular Cancer Research, 4, 169–76. https://doi.org/10.1158/1541-7786.MCR-05-0165[pii]. 4/3/169.

    Article  CAS  PubMed  Google Scholar 

  15. Linxweiler, M., Linxweiler, J., Barth, M., Benedix, J., Jung, V., Kim, Y. J., Bohle, R. M., Zimmermann, R., & Greiner, M. (2012). Sec62 bridges the gap from 3q amplification to molecular cell biology in non-small cell lung cancer. American Journal of Pathology, 180, 473–83. https://doi.org/10.1016/j.ajpath.2011.10.039S0002-9440(11)01062-5[pii].

    Article  CAS  Google Scholar 

  16. Greiner, M., Kreutzer, B., Jung, V., Grobholz, R., Hasenfus, A., Stohr, R. F., Tornillo, L., Dudek, J., Stockle, M., Unteregger, G., Kamradt, J., Wullich, B., & Zimmermann, R. (2011). Silencing of the SEC62 gene inhibits migratory and invasive potential of various tumor cells. International Journal of Cancer, 128, 2284–95. https://doi.org/10.1002/ijc.25580.

    Article  CAS  PubMed  Google Scholar 

  17. Weng, L, Du, J, Zhou, Q, Cheng, B, Li, J, Zhang, D & Ling, C (2012) Identification of cyclin B1 and Sec62 as biomarkers for recurrence in patients with HBV-related hepatocellular carcinoma after surgical resection. 11, 39.

  18. Du, J., Zhao, Z., Zhao, H., Liu, D., & Ling, C. (2019). Sec62 promotes early recurrence of hepatocellular carcinoma through activating integrinα/CAV1 signalling. Oncogenesis, 8, 74.

    Article  CAS  Google Scholar 

  19. Geis, T., Doring, C., Popp, R., Grossmann, N., Fleming, I., Hansmann, M. L., Dehne, N., & Brune, B. (2015). HIF-2alpha-dependent PAI-1 induction contributes to angiogenesis in hepatocellular carcinoma. Experimental Cell Research, 331, 46–57. https://doi.org/10.1016/j.yexcr.2014.11.018.

    Article  CAS  PubMed  Google Scholar 

  20. Samarakoon, R., & Higgins, P. J. (2002). MEK/ERK pathway mediates cell-shape-dependent plasminogen activator inhibitor type 1 gene expression upon drug-induced disruption of the microfilament and microtubule networks. Journal of Cell Science, 115, 3093–3103.

    Article  CAS  Google Scholar 

  21. Samarakoon, R., Overstreet, J. M., Higgins, S. P., & Higgins, P. J. (2012). TGF-β1→SMAD/p53/USF2→PAI-1 transcriptional axis in ureteral obstruction-induced renal fibrosis. Cell & Tissue Research, 347, 117–128.

    Article  CAS  Google Scholar 

  22. Higgins, S. P., Samarakoon, R., Higgins, C. E., Freytag, J., Wilkinsport, C. E., & Higgins, P. J. (2009). TGF-β1 -induced expression of the anti-apoptotic PAI-1 protein requires EGFR signaling. Cell Commun Insights, 2, 1–11.

    Article  CAS  Google Scholar 

  23. Hideki, K., Xuan, L., Kunio, T., Toshiharu, O., Kazuko, K., Daisuke, M., Naoki, T. & Haruyoshi, Y. (2009). Dexamethasone enhances basal and TNF-α-stimulated production of PAI-1 via the glucocorticoid receptor regardless of 11β-hydroxysteroid dehydrogenase 2 status in human proximal renal tubular cells. Nephrology Dialysis Transplantation, 24, 1759–1765.

    Article  Google Scholar 

  24. Miyagawa, R., Asakura, T., Nakamura, T., Okada, H., Iwaki, S., Sobel, B. E., & Fujii, S. (2010). Increased expression of plasminogen activator inhibitor type-1 (PAI-1) in HEPG2 cells induced by insulin mediated by the 3’-untranslated region of the PAI-1 gene and its pharmacologic implications. Coronary Artery Disease, 21, 144–150.

    Article  Google Scholar 

  25. Mccarty, M. F. (2005). De novo synthesis of diacylglycerol in endothelium may mediate the association between PAI-1 and the insulin resistance syndrome. Medical Hypotheses, 64, 388–393.

    Article  CAS  Google Scholar 

  26. Ahn, Y. T., Chua, M. S., Whitlock, J. P., Shin, Y. C., Song, W. H., Kim, Y., Eom, C. Y., & An, W. G. (2010). Rodent-specific hypoxia response elements enhance PAI-1 expression through HIF-1 or HIF-2 in mouse hepatoma cells. International Journal of Oncology, 37, 1627–1638.

    CAS  PubMed  Google Scholar 

  27. Sprague, L., Tomaso, H., Mengele, K., Schilling, D., Bayer, C., Stadler, P., Schmitt, M., & Molls, M. (2007). Effects of hypoxia and reoxygenation on the expression levels of the urokinase-type plasminogen activator, its inhibitor plasminogen activator inhibitor type-1 and the urokinase-type plasminogen activator receptor in human head and neck tumour cells. Oncology Reports, 17, 1259–1268.

    CAS  PubMed  Google Scholar 

  28. Robinson, M. D., & Oshlack, A. (2010). A scaling normalization method for differential expression analysis of RNA-seq data. Genome biology, 11, 1–9.

    Article  Google Scholar 

  29. Du, J., Zhao, Z., Zhao, H., Liu, D., Liu, H., Chen, J., Cheng, B., Zhai, X., Yin, Z., Zhang, Y., & Ling, C. (2019). Sec62 promotes early recurrence of hepatocellular carcinoma through activating integrinalpha/CAV1 signalling. Oncogenesis, 8, 74. https://doi.org/10.1038/s41389-019-0183-6[pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fang, Q., Yao, S., Luo, G. & & Zhang, X. (2018). Identification of differentially expressed genes in human breast cancer cells induced by 4-hydroxyltamoxifen and elucidation of their pathophysiological relevance and mechanisms. Oncotarget, 9, 2475–2501.

    Article  Google Scholar 

  31. KjøLler, L., Kanse, S. M., Kirkegaard, T., Rodenburg, K. W., RNne, E., Goodman, S. L., Preissner, K. T., Ossowski, L., & Andreasen, P. A. (1997). Plasminogen activator inhibitor-1 represses integrin- and vitronectin-mediated cell migration independently of its function as an inhibitor of plasminogen activation. Experimental Cell Research, 232, 420–9.

    Article  Google Scholar 

  32. Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Simonovic, M., Roth, A., Santos, A., & Tsafou, K. P. (2015). STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Research, 43, D447–D452.

    Article  CAS  Google Scholar 

  33. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498–2504.

    Article  CAS  Google Scholar 

  34. Bandettini, W. P., Kellman, P., Mancini, C., Booker, O. J., Vasu, S., Leung, S. W., Wilson, J. R., Shanbhag, S. M., Chen, M. Y., & Arai, A. E. (2012). MultiContrast Delayed Enhancement (MCODE) improves detection of subendocardial myocardial infarction by late gadolinium enhancement cardiovascular magnetic resonance: a clinical validation study. Journal of Cardiovascular Magnetic Resonance Official Journal of the Society for Cardiovascular Magnetic Resonance, 14, 83–83.

    Article  Google Scholar 

  35. Lin, Z., Niu, Y., Wan, A., Chen, D., Liang, H., Chen, X., Sun, L., Zhan, S., Chen, L., Cheng, C., Zhang, X., Bu, X., He, W. & Wan, G. (2020) RNA m(6) A methylation regulates sorafenib resistance in liver cancer through FOXO3-mediated autophagy. EMBO Journal, 39:e103181. https://doi.org/10.15252/embj.2019103181

  36. Tsai, Y. P., & Wu, K. J. (2012). Hypoxia-regulated target genes implicated in tumor metastasis. Journal of Biomedical Science, 19, 102 https://doi.org/10.1186/1423-0127-19-102[pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li, H., Ge, C., Zhao, F., Yan, M., Hu, C., Jia, D., Tian, H., Zhu, M., Chen, T., Jiang, G., Xie, H., Cui, Y., Gu, J., Tu, H., He, X., Yao, M., Liu, Y., & Li, J. (2011). Hypoxia-inducible factor 1 alpha-activated angiopoietin-like protein 4 contributes to tumor metastasis via vascular cell adhesion molecule-1/integrin beta1 signaling in human hepatocellular carcinoma. Hepatology, 54, 910–9. https://doi.org/10.1002/hep.24479.

    Article  CAS  PubMed  Google Scholar 

  38. Huang, Q., Li, J., Xing, J., Li, W., Li, H., Ke, X., Zhang, J., Ren, T., Shang, Y., Yang, H., Jiang, J., & Chen, Z. (2014). CD147 promotes reprogramming of glucose metabolism and cell proliferation in HCC cells by inhibiting the p53-dependent signaling pathway. Journal of Hepatology, 61, 859–66. https://doi.org/10.1016/j.jhep.2014.04.035.

    Article  CAS  PubMed  Google Scholar 

  39. Ren, X., Wang, C., Xie, B., Hu, L., Chai, H., Ding, L., Tang, L., Xia, Y., & Dou, X. (2017). Tanshinone IIA induced cell death via miR30b-p53-PTPN11/SHP2 signaling pathway in human hepatocellular carcinoma cells. European Journal of Pharmacology, 796, 233–241. https://doi.org/10.1016/j.ejphar.2016.11.046. S0014-2999(16)30760-9 [pii].

    Article  CAS  PubMed  Google Scholar 

  40. Nazmy, E. A., El-Khouly, O. A., Zaki, M. M. A., Elsherbiny, N. M., Said, E., Al-Gayyar, M. M. H., & Salem, H. A. (2019). Targeting p53/TRAIL/caspase-8 signaling by adiponectin reverses thioacetamide-induced hepatocellular carcinoma in rats. Environmental Toxicology and Pharmacology, 72, 103240. https://doi.org/10.1016/j.etap.2019.103240. S1382-6689(19)30111-5 [pii].

    Article  CAS  PubMed  Google Scholar 

  41. Davalieva, K., Kiprijanovska, S., Maleva Kostovska, I., Stavridis, S., Stankov, O., Komina, S., Petrusevska, G. and Polenakovic, M. (2017). Comparative proteomics analysis of urine reveals down-regulation of acute phase response signaling and LXR/RXR activation pathways in prostate cancer. Proteomes, 6. https://doi.org/10.3390/proteomes6010001

  42. Jin, Y., Liang, Z. Y., Zhou, W. X., & Zhou, L. (2020). Expression, clinicopathologic and prognostic significance of plasminogen activator inhibitor 1 in hepatocellular carcinoma. Cancer Biomark, 27, 285–293. https://doi.org/10.3233/CBM-190560.

    Article  CAS  PubMed  Google Scholar 

  43. Divella, R., Lacalamita, R., Tommasi, S., Coviello, M., Daniele, A., Garrisi, V. M., Abbate, I., Simone, G., Gadaleta, C., Paradiso, A., & Quaranta, M. (2008). PAI-1, t-PA and circulating hTERT DNA as related to virus infection in liver carcinogenesis. Anticancer Research, 28, 223–8.

    CAS  PubMed  Google Scholar 

  44. Divella, R., Daniele, A., Abbate, I., Savino, E., Casamassima, P., Sciortino, G., Simone, G., Gadaleta-Caldarola, G., Fazio, V., Gadaleta, C. D., Sabba, C., & Mazzocca, A. (2015). Circulating levels of PAI-1 and SERPINE1 4G/4G polymorphism are predictive of poor prognosis in HCC patients undergoing TACE. Translate Oncology, 8, 273–8. https://doi.org/10.1016/j.tranon.2015.05.002.

    Article  Google Scholar 

  45. Wang, Z., Huang, D., Huang, J., Nie, K., Li, X., & Yang, X. (2020). lncRNA TMPO-AS1 exerts oncogenic roles in HCC through regulating miR-320a/SERBP1 axis. Onco Targets and Therapy, 13, 6539–6551. https://doi.org/10.2147/OTT.S250355.

    Article  CAS  Google Scholar 

  46. Matsuoka, H., Sisson, T. H., Nishiuma, T., & Simon, R. H. (2006). Plasminogen-mediated activation and release of hepatocyte growth factor from extracellular matrix. American Journal of Respiratory Cell and Molecular Biology, 35, 705–13. https://doi.org/10.1165/rcmb.2006-0006OC. 2006-0006OC [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stefansson, S., Petitclerc, E., Wong, M. K., McMahon, G. A., Brooks, P. C., & Lawrence, D. A. (2001). Inhibition of angiogenesis in vivo by plasminogen activator inhibitor-1. Journal of Biological Chemistry, 276, 8135–41. https://doi.org/10.1074/jbc.M007609200. M007609200[pii].

    Article  CAS  Google Scholar 

  48. Ehlken, C., Grundel, B., Michels, D., Junker, B., Stahl, A., Schlunck, G., Hansen, L. L., Feltgen, N., Martin, G., Agostini, H. T., & Pielen, A. (2015). Increased expression of angiogenic and inflammatory proteins in the vitreous of patients with ischemic central retinal vein occlusion. PLoS ONE, 10, e0126859. https://doi.org/10.1371/journal.pone.0126859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Muench, D. E., Olsson, A., Ferchen, K., Pham, G., Serafin, R. A., Chutipongtanate, S., Dwivedi, P., Song, B., Hay, S., Chetal, K., Trump-Durbin, L. R., Mookerjee-Basu, J., Zhang, K., Yu, J. C., Lutzko, C., Myers, K. C., Nazor, K. L., Greis, K. D., Kappes, D. J., Way, S. S., Salomonis, N., & Grimes, H. L. (2020). Mouse models of neutropenia reveal progenitor-stage-specific defects. Nature, 582, 109–114. https://doi.org/10.1038/s41586-020-2227-7[pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dwivedi, P., Muench, D. E., Wagner, M., Azam, M., Grimes, H. L., & Greis, K. D. (2019). Time resolved quantitative phospho-tyrosine analysis reveals Bruton’s Tyrosine kinase mediated signaling downstream of the mutated granulocyte-colony stimulating factor receptors. Leukemia, 33, 75–87. https://doi.org/10.1038/s41375-018-0188-8[pii].

    Article  CAS  PubMed  Google Scholar 

  51. Dwivedi, P., & Greis, K. D. (2017). Granulocyte colony-stimulating factor receptor signaling in severe congenital neutropenia, chronic neutrophilic leukemia, and related malignancies. Experimental Hematology, 46, 9–20. https://doi.org/10.1016/j.exphem.2016.10.008[pii]. S0301-472X(16)30663-4.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The present study was supported by the National Natural Scientific Foundation of China (grant no. 81473487 and 82074138 to JD, no.81803929 to Zifei Yin).

Authors’ Contributions

J.D. conceived and designed the study. Microarray analysis and acquisition of data, including qPCR, tube formation and western blot analyses were performed by H.Z. and Y.M. Cells culture, transfection and tube formation were performed by Z.Z. Analysis and interpretation of data, including statistical analysis, biostatistics, computational analysis was performed by Y.M. and J.D. J.D. and H.Z. wrote, reviewed and/or revised the manuscript. All authors read and approved the manuscript and agree to be accountable for all aspects of the research in ensuring that the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Du.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., Zhao, H., Zhao, Z. et al. Sec62 promotes pro-angiogenesis of hepatocellular carcinoma cells under hypoxia. Cell Biochem Biophys 79, 747–755 (2021). https://doi.org/10.1007/s12013-021-01008-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-021-01008-6

Keywords

Navigation