Skip to main content

Advertisement

Log in

Inhibition of miR-145-5p Reduces Spinal Cord Injury-Induced Inflammatory and Oxidative Stress Responses via Affecting Nurr1-TNF-α Signaling Axis

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Inflammation and oxidative stress feature prominently in the secondary spinal cord injury (SCI). The present work is targeted at deciphering miR-145-5p’s role and underlying mechanism in SCI. We randomly divided Sprague-Dawley rats into SCI group and control group. Microglial BV2 cells were separated into control group and lipopolysaccharide (LPS) treatment group. Enzyme-linked immunosorbent assay was carried out for determining the concentrations of interleukin-6, interleukin-1β, and tumor necrosis factor-α (TNF-α). The expressions of malondialdehyde, glutathione peroxidase, superoxide dismutase, and reactive oxygen species were also detected. TNF-α, miR-145-5p, and Nurr1 expressions were examined by western blot and quantitative real-time polymerase chain reaction. Western blotting and dual-luciferase reporter gene assay were conducted to examine the regulating impact that miR-145-5p had on Nurr1 and TNF-α. MiR-145-5p was remarkably upregulated in the SCI rat model’s spinal cord tissues and BV2 cells treated with LPS, and Nurr1 expression was dramatically lowered. Furthermore, miR-145-5p inhibition markedly repressed inflammatory and oxidative stress responses. Moreover, it was proved that Nurr1 was a direct miR-145-5p target. The inhibition of miR-145-5p helped promote Nurr1 expression to block TNF-α signaling. MiR-145-5p inhibition mitigates inflammation and oxidative stress via targeting Nurr1 to regulate TNF-α signaling, which ameliorates SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Abbreviations

SCI:

Spinal cord injury

LPS:

Lipopolysaccharide

ELISA:

Enzyme-linked immunosorbent assay

IL-1β:

Interleukin-1β

TNF-α:

Tumor necrosis factor-α

IL-6:

Interleukin-6

ROS:

Reactive oxygen species

MDA:

Malondialdehyde

GSH-Px:

Glutathione peroxidase

SOD:

Superoxide dismutase

qRT-PCR:

Quantitative real-time polymerase chain reaction

MGs:

Microglias

NF-κB:

Nuclear factor-kappa B

BBB:

Basso–Bettie–Bresnahan

3′-UTR:

3′-untranslated region

GAPDH:

Gyceraldehyde 3-phosphate dehydrogenase

miRNA:

MicroRNA

References

  1. Rogers, W. K., & Todd, M. (2016). Acute spinal cord injury. Best Practice & Research: Clinical Anaesthesiology, 30(1), 27–39.

    Article  CAS  Google Scholar 

  2. Jazayeri, S. B., Beygi, S., Shokraneh, F., Hagen, E. M., & Rahimi-Movaghar, V. (2015). Incidence of traumatic spinal cord injury worldwide: A systematic review. European Spine Journal, 24(5), 905–918.

    Article  PubMed  Google Scholar 

  3. Liu, Y., Li, Q., Zhang, B., Ban, D.-X., & Feng, S.-Q. (2017). Multifunctional biomimetic spinal cord: New approach to repair spinal cord injuries. World Journal of Experimental Medicine, 7(3), 78–83.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Orr, M. B., & Gensel, J. C. (2018). Spinal cord injury scarring and inflammation: Therapies targeting glial and inflammatory responses. Neurotherapeutics, 15(3), 541–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. David, S., Greenhalgh, A. D., & Kroner, A. (2015). Macrophage and microglial plasticity in the injured spinal cord. Neuroscience, 307, 311–318.

    Article  CAS  PubMed  Google Scholar 

  6. Zhou, H.-J., Wang, L.-Q., Xu, Q.-S., Fan, Z.-X., Zhu, Y., Jiang, H., Zheng, X.-J., Ma, Y.-H., & Zhan, R.-Y. (2016). Downregulation of miR-199b promotes the acute spinal cord injury through IKKβ-NF-κB signaling pathway activating microglial cells. Experimental Cell Research, 349(1), 60–67.

    Article  CAS  PubMed  Google Scholar 

  7. Ning, B., Gao, L., Liu, R.-H., Liu, Y., Zhang, N.-S. & Chen, Z.-Y. (2014). microRNAs in spinal cord injury: Potential roles and therapeutic implications. International Journal of Biological Sciences, 10(9), 997–1006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Shi, Z., Zhou, H., Lu, L., Li, X., Fu, Z., Liu, J., Kang, Y., Wei, Z., Pan, B., Liu, L., Kong, X., & Feng, S. (2017). The roles of microRNAs in spinal cord injury. The International Journal of Neuroscience, 127(12), 1104–1115.

    Article  CAS  PubMed  Google Scholar 

  9. Hachisuka, S., Kamei, N., Ujigo, S., Miyaki, S., Yasunaga, Y., & Ochi, M. (2014). Circulating microRNAs as biomarkers for evaluating the severity of acute spinal cord injury. Spinal Cord, 52(8), 596–600.

    Article  CAS  PubMed  Google Scholar 

  10. Fu, X., Shen, Y., Wang, W., & Li, X. (2018). MiR-30a-5p ameliorates spinal cord injury-induced inflammatory responses and oxidative stress by targeting Neurod 1 through MAPK/ERK signalling. Clinical and Experimental Pharmacology & Physiology, 45(1), 68–74.

    Article  CAS  Google Scholar 

  11. He, J., Zhao, J., Peng, X., Shi, X., Zong, S., & Zeng, G. (2017). Molecular mechanism of MiR-136-5p targeting NF-κB/A20 in the IL-17-mediated inflammatory response after spinal cord injury. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 44(3), 1224–1241.

    Article  CAS  Google Scholar 

  12. Deng, G., Gao, Y., Cen, Z., He, J., Cao, B., Zeng, G., & Zong, S. (2018). miR-136-5p regulates the inflammatory response by targeting the IKKβ/NF-κB/A20 pathway after spinal cord injury. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 50(2), 512–524.

    Article  CAS  Google Scholar 

  13. Chen, J., Chen, T., Zhu, Y., Li, Y., Zhang, Y., Wang, Y., Li, X., Xie, X., Wang, J., Huang, M., Sun, X., & Ke, Y. (2019). circPTN sponges miR-145-5p/miR-330-5p to promote proliferation and stemness in glioma. Journal of Experimental & Clinical Cancer Research, 38(1), 398.

    Article  CAS  Google Scholar 

  14. Cao, H., Pan, G., Tang, S., Zhong, N., Liu, H., Zhou, H., Peng, Q., & Zou, Y. (2020). miR-145-5p regulates the proliferation, migration and invasion in cervical carcinoma by targeting KLF5. OncoTargets and Therapy, 13, 2369–2376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, H., Jiang, M., Liu, Q., Han, Z., Zhao, Y., & Ji, S. (2018). miR-145-5p inhibits the proliferation and migration of bladder cancer cells by targeting TAGLN2. Oncology Letters, 16(5), 6355–6360.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Feng, J., Zhou, Q., Yi, H., Ma, S., Li, D., Xu, Y., Wang, J., & Yin, S. (2019). A novel lncRNA n384546 promotes thyroid papillary cancer progression and metastasis by acting as a competing endogenous RNA of miR-145-5p to regulate AKT3. Cell Death & Disease, 10(6), 433.

    Article  CAS  Google Scholar 

  17. Qi, X., Shao, M., Sun, H., Shen, Y., Meng, D., & Huo, W. (2017). Long non-coding RNA SNHG14 promotes microglia activation by regulating miR-145-5p/PLA2G4A in cerebral infarction. Neuroscience, 348, 98–106.

    Article  CAS  PubMed  Google Scholar 

  18. Xie, X., Peng, L., Zhu, J., Zhou, Y., Li, L., Chen, Y., Yu, S., & Zhao, Y. (2017). miR-145-5p/Nurr1/TNF-α signaling-induced microglia activation regulates neuron injury of acute cerebral ischemic/reperfusion in rats. Frontiers in Molecular Neuroscience, 10, 383.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ma, S., Zhang, C., Zhang, Z., Dai, Y., Gu, R., & Jiang, R. (2019). Geniposide protects PC12 cells from lipopolysaccharide-evoked inflammatory injury via up-regulation of miR-145-5p. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 2875–2881.

    Article  CAS  PubMed  Google Scholar 

  20. Dong, J., Li, S., Mo, J.-L., Cai, H.-B., & Le, W.-D. (2016). Nurr1-based therapies for Parkinson’s disease. CNS Neuroscience & Therapeutics, 22(5), 351–359.

    Article  CAS  Google Scholar 

  21. Moon, M., Jung, E. S., Jeon, S. G., Cha, M.-Y., Jang, Y., Kim, W., Lopes, C., Mook-Jung, I., & Kim, K.-S. (2019). Nurr1 (NR4A2) regulates Alzheimer’s disease-related pathogenesis and cognitive function in the 5XFAD mouse model. Aging Cell, 18(1), e12866.

    Article  PubMed  CAS  Google Scholar 

  22. Saijo, K., Winner, B., Carson, C. T., Collier, J. G., Boyer, L., Rosenfeld, M. G., Gage, F. H., & Glass, C. K. (2009). A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell, 137(1), 47–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Glass, C. K., Saijo, K., Winner, B., Marchetto, M. C., & Gage, F. H. (2010). Mechanisms underlying inflammation in neurodegeneration. Cell, 140(6), 918–934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wei, X., Gao, H., Zou, J., Liu, X., Chen, D., Liao, J., Xu, Y., Ma, L., Tang, B., Zhang, Z., Cai, X., Jin, K., Xia, Y., & Wang, Q. (2016). Contra-directional coupling of Nur77 and Nurr1 in neurodegeneration: A novel mechanism for memantine-induced anti-inflammation and anti-mitochondrial impairment. Molecular Neurobiology, 53(9), 5876–5892.

    Article  CAS  PubMed  Google Scholar 

  25. Pandi, P., Jain, A., Raju, S., & Khan, W. (2017). Therapeutic approaches for the delivery of TNF-α siRNA. Therapeutic Delivery, 8(5), 343–355.

    Article  CAS  PubMed  Google Scholar 

  26. Lampropoulou, I. T., Stangou, P., Sarafidis, A., Gouliovaki, P., Giamalis, I. Tsouchnikas, T., Didangelos, T. & Papagianni, A. (2020). TNF-α pathway and T-cell immunity are activated early during the development of diabetic nephropathy in Type II diabetes mellitus. Clinical Immunology, 215, 108423

    Article  CAS  PubMed  Google Scholar 

  27. Kong, X., Zhang, Z., Fu, T., Ji, J., Yang, J., & Gu, Z. (2019). TNF-α regulates microglial activation via the NF-κB signaling pathway in systemic lupus erythematosus with depression. International Journal of Biological Macromolecules, 125, 892–900.

    Article  CAS  PubMed  Google Scholar 

  28. Li, J., Lv, H., & Che, Y. (2020). microRNA-381-3p confers protection against ischemic stroke through promoting angiogenesis and inhibiting inflammation by suppressing Cebpb and Map3k8. Cellular and Molecular Neurobiology, 40(8), 1307–1319.

    Article  CAS  PubMed  Google Scholar 

  29. Zong, S., Zeng, G., Fang, Y., Peng, J., Tao, Y., Li, K., & Zhao, J. (2014). The role of IL-17 promotes spinal cord neuroinflammation via activation of the transcription factor STAT3 after spinal cord injury in the rat. Mediators of Inflammation, 2014, 786947.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Alizadeh, A., Dyck, S. M., & Karimi-Abdolrezaee, S. (2019). Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Frontiers Neurology, 10, 282.

    Article  Google Scholar 

  31. Kabu, S., Gao, Y., Kwon, B. K., & Labhasetwar, V. (2015). Drug delivery, cell-based therapies, and tissue engineering approaches for spinal cord injury. Journal of Controlled Release, 219, 141–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Flores-Mateo, G., Elosua, R., Rodriguez-Blanco, T., Basora-Gallisà, J., Bulló, M., Salas-Salvadó, J., Martínez-González, M. Á., Estruch, R., Corella, D., Fitó, M., Fiol, M., Arós, F., Gómez-Gracia, E., Subirana, I., Lapetra, J., Ruiz-Gutiérrez, V., Sáez, G. T. & & Covas, M. I. PREDIMED Study Investigators (2014). Oxidative stress is associated with an increased antioxidant defense in elderly subjects: a multilevel approach. PLoS One, 9(9), e105881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Ponist, S., Zloh, M., Bauerova, K. (2019) Impact of oxidative stress on inflammation in rheumatoid and adjuvant arthritis: Damage to lipids, proteins, and enzymatic antioxidant defense in plasma and different tissues. Animal Models in Medicine and Biology.

  34. Saha, A. K., Schmidt, B. R., Wilhelmy, J., Nguyen, V., & Davis, R. W. (2018). Erythrocyte deformability as a potential biomarker for chronic fatigue syndrome. Blood, 132(Suppl_1), 4874–4874.

    Article  Google Scholar 

  35. Khansari, N., Shakiba, Y., & Mahmoudi, M. (2009). Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Patents Inflammation & Allergy Drug Discovery, 3, 73–80.

    Article  CAS  Google Scholar 

  36. Huang, Y. N., Yang, L. Y., Greig, N. H., Wang, Y. C., Lai, C. C., & Wang, J. Y. (2018). Neuroprotective effects of pifithrin-alpha against traumatic brain injury in the striatum through suppression of neuroinflammation, oxidative stress, autophagy, and apoptosis. Scientific Reports, 8(1), 2368.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Koc, R. K., Akdemir, H., Karakücük, E. I., Oktem, I. S., & Menkü, A. (1999). Effect of methylprednisolone, tirilazad mesylate and vitamin E on lipid peroxidation after experimental spinal cord injury. Spinal Cord, 37(1), 29–32.

    Article  CAS  PubMed  Google Scholar 

  38. Genovese, T., Esposito, E., Mazzon, E., Di Paola, R., Caminiti, R., Bramanti, P., Cappelani, A., & Cuzzocrea, S. (2009). Absence of endogenous interleukin-10 enhances secondary inflammatory process after spinal cord compression injury in mice. Journal of Neurochemistry, 108(6), 1360–1372.

    Article  CAS  PubMed  Google Scholar 

  39. Lee, J. Y., Choi, H. Y., Baik, H. H., Ju, B. G., Kim, W.-K., & Yune, T. Y. (2017). Cordycepin-enriched WIB-801C from Cordyceps militaris improves functional recovery by attenuating blood-spinal cord barrier disruption after spinal cord injury. Journal of Ethnopharmacology, 203, 90–100.

    Article  CAS  PubMed  Google Scholar 

  40. Ponomarev, E. D., Veremeyko, T., & Weiner, H. L. (2013). MicroRNAs are universal regulators of differentiation, activation, and polarization of microglia and macrophages in normal and diseased CNS. Glia, 61(1), 91–103.

    Article  PubMed  Google Scholar 

  41. Rupaimoole, R., & Slack, F. J. (2017). MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nature Reviews: Drug Discovery, 16(3), 203–222.

    CAS  PubMed  Google Scholar 

  42. Yunta, M., Nieto-Díaz, M., Esteban, F. J., Caballero-López, M., Navarro-Ruíz, R., Reigada, D., Pita-Thomas, D. W., del Águila, A., Muñoz-Galdeano, T., & Maza, R. M. (2012). MicroRNA dysregulation in the spinal cord following traumatic injury. PLoS One, 7(4), e34534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nieto-Diaz, M., Esteban, F. J., Reigada, D., Muñoz-Galdeano, T., Yunta, M., Caballero-López, M., Navarro-Ruiz, R., Del Águila, A., & Maza, R. M. (2014). MicroRNA dysregulation in spinal cord injury: causes, consequences and therapeutics. Frontiers in Cellular Neuroscience, 8, 53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Gao, Z., Zhao, Y., He, X., Leng, Z., Zhou, X., Song, H., Wang, R., Gao, Z., Wang, Y., Liu, J., Niu, B., Li, H., Ouyang, P., & Chang, S. E. (2020). Transplantation of sh-miR-199a-5p-modified olfactory ensheathing cells promotes the functional recovery in rats with contusive spinal cord injury. Cell Transplant, 29, 963689720916173.

    PubMed  Google Scholar 

  45. Jee, M. K., Jung, J. S., Im, Y. B., Jung, S. J., & Kang, S. K. (2012). Silencing of miR20a is crucial for Ngn1-mediated neuroprotection in injured spinal cord. Human Gene Therapy, 23(5), 508–520.

    Article  CAS  PubMed  Google Scholar 

  46. Gan, C. S., Wang, C. W., & Tan, K. S. (2012). Circulatory microRNA-145 expression is increased in cerebral ischemia. Genetics and Molecular Research: GMR, 11(1), 147–152.

    Article  CAS  PubMed  Google Scholar 

  47. Jankovic, J., Chen, S., & Le, W. D. (2005). The role of Nurr1 in the development of dopaminergic neurons and Parkinson’s disease. Progress in Neurobiology, 77(1-2), 128–138.

    Article  CAS  PubMed  Google Scholar 

  48. Yan, W., Chen, Z. Y., Chen, J. Q., & Chen, H. M. (2016). BMP2 promotes the differentiation of neural stem cells into dopaminergic neurons via miR-145-mediated upregulation of Nurr1 expression. American Journal of Translational Research, 8(9), 3689–3699.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Hubei Yican Health Industry Co., Ltd. for its linguistic assistance during the preparation of this manuscript.

Author contributions

Conceived and designed the experiments: L.J.; performed the experiments: L.J., Z.-C.W., L.-L.X.; statistical analysis: L.-L.X., S.-Y.Y., C.L.; wrote the paper: L.J., Z.-C.W. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Jiang or Chao Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval and consent to participate

Our study was approved by the Ethics Review Board of Rizhao Central Hospital and Qilu Hospital of Shandong University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Wei, ZC., Xu, LL. et al. Inhibition of miR-145-5p Reduces Spinal Cord Injury-Induced Inflammatory and Oxidative Stress Responses via Affecting Nurr1-TNF-α Signaling Axis. Cell Biochem Biophys 79, 791–799 (2021). https://doi.org/10.1007/s12013-021-00992-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-021-00992-z

Keywords

Navigation