Skip to main content

Advertisement

Log in

Functional Regulatory Mechanisms Underlying Bone Marrow Mesenchymal Stem Cell Senescence During Cell Passages

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Mesenchymal stem cell (MSC) transplantation is an effective periodontal regenerative therapy. MSCs are multipotent, have self-renewal ability, and can differentiate into periodontal cells. However, senescence is inevitable for MSCs. In vitro, cell senescence can be induced by long-term culture with/without cell passage. However, the regulatory mechanism of MSC senescence remains unclear. Undifferentiated MSC-specific transcription factors can regulate MSC function. Herein, we identified the regulatory transcription factors involved in MSC senescence and elucidated their mechanisms of action. We cultured human MSCs (hMSCs) with repetitive cell passages to induce cell senescence and evaluated the mRNA and protein expression of cell senescence-related genes. Additionally, we silenced the cell senescence-induced transcription factors, GATA binding protein 6 (GATA6) and SRY-box 11 (SOX11), and investigated senescence-related signaling pathways. With repeated passages, the number of senescent cells increased, while the cell proliferation capacity decreased; GATA6 mRNA expression was upregulated and that of SOX11 was downregulated. Repetitive cell passages decreased Wnt and bone morphogenetic protein (BMP) signaling pathway-related gene expression. Silencing of GATA6 and SOX11 regulated Wnt and BMP signaling pathway-related genes and affected cell senescence-related genes; moreover, SOX11 silencing regulated GATA6 expression. Hence, we identified them as pair of regulatory transcription factors for cell senescence in hMSCs via the Wnt and BMP signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., & Marshak, D. R. (1999). Multilineage potential of adult human mesenchymal stem cells (in Eng). Science, 284, 143–147. https://doi.org/10.1126/science.284.5411.143

    Article  CAS  PubMed  Google Scholar 

  2. Caplan, A. I., & Bruder, S. P. (2001). Mesenchymal stem cells: Building blocks for molecular medicine in the 21st century (in Eng). Trends in Molecular Medicine, 7, 259–264

    Article  CAS  PubMed  Google Scholar 

  3. Hashimoto, Y., Nishida, Y., Takahashi, S., Nakamura, H., Mera, H., et al. (2019). Transplantation of autologous bone marrow-derived mesenchymal stem cells under arthroscopic surgery with microfracture versus microfracture alone for articular cartilage lesions in the knee: A multicenter prospective randomized control clinical trial (in Eng). Regenerative Therapy, 11, 106–113. https://doi.org/10.1016/j.reth.2019.06.002

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kawaguchi, H., Hayashi, H., Mizuno, N., Fujita, T., Hasegawa, N., Shiba, H., Nakamura, S., Hino, T., Yoshino, H., Kurihara, H., Tanaka, H., Kimura, A., Tsuji, K., & Kato, Y. (2005). [Cell transplantation for periodontal diseases. A novel periodontal tissue regenerative therapy using bone marrow mesenchymal stem cells] (in Jpn). Clinical Calcium, 15, 99–104. CliCa11971202

    PubMed  Google Scholar 

  5. Horwitz, E. M., Prockop, D. J., Fitzpatrick, L. A., Koo, W. W., Gordon, P. L., Neel, M., Sussman, M., Orchard, P., Marx, J. C., Pyeritz, R. E., & Brenner, M. K. (1999). Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta (in Eng). Nature Medicine, 5, 309–313. https://doi.org/10.1038/6529

    Article  CAS  PubMed  Google Scholar 

  6. Miyahara, Y., Nagaya, N., Kataoka, M., Yanagawa, B., Tanaka, K., Hao, H., Ishino, K., Ishida, H., Shimizu, T., Kangawa, K., Sano, S., Okano, T., Kitamura, S., & Mori, H. (2006). Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction (in Eng). Nature Medicine, 12, 459–465. https://doi.org/10.1038/nm1391

    Article  CAS  PubMed  Google Scholar 

  7. Kawaguchi, H., Hirachi, A., Hasegawa, N., Iwata, T., Hamaguchi, H., Shiba, H., Takata, T., Kato, Y., & Kurihara, H. (2004). Enhancement of periodontal tissue regeneration by transplantation of bone marrow mesenchymal stem cells (in Eng). Journal of Periodontology, 75, 1281–1287. https://doi.org/10.1902/jop.2004.75.9.1281

    Article  PubMed  Google Scholar 

  8. Hasegawa, N., Kawaguchi, H., Hirachi, A., Takeda, K., Mizuno, N., Nishimura, M., Koike, C., Tsuji, K., Iba, H., Kato, Y., & Kurihara, H. (2006). Behavior of transplanted bone marrow-derived mesenchymal stem cells in periodontal defects (in Eng). Journal of Periodontology, 77, 1003–1007. https://doi.org/10.1902/jop.2006.050341

    Article  PubMed  Google Scholar 

  9. Trubiani, O., Orsini, G., Caputi, S., & Piatelli, A. (2006). Adult mesenchymal stem cells in dental research: A new approach for tissue engineering (in Eng). International Journal of Immunopathology and Pharmacology, 19, 451–460. https://doi.org/10.1177/039463200601900301

    Article  CAS  PubMed  Google Scholar 

  10. Yamada, Y., Ueda, M., Hibi, H., & Baba, S. (2006). A novel approach to periodontal tissue regeneration with mesenchymal stem cells and platelet-rich plasma using tissue engineering technology: A clinical case report (in Eng). The International Journal of Periodontics & Restorative Dentistry, 26, 363–369

    Google Scholar 

  11. Hayflick, L. (1965). The limited in vitro lifetime of human diploid cell strains (in Eng). Experimental Cell Research, 37, 614–636. https://doi.org/10.1016/0014-4827(65)90211-9

    Article  CAS  PubMed  Google Scholar 

  12. Wagner, W., Horn, P., Castoldi, M., Diehlmann, A., Bork, S., Saffrich, R., Benes, V., Blake, J., Pfister, S., Eckstein, V., & Ho, A. D. (2008). Replicative senescence of mesenchymal stem cells: A continuous and organized process (in Eng). PLoS ONE, 3, e2213. https://doi.org/10.1371/journal.pone.0002213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Singh, S., Dhaliwal, N., Crawford, R., & Xiao, Y. (2009). Cellular senescence and longevity of osteophyte-derived mesenchymal stem cells compared to patient-matched bone marrow stromal cells (in Eng). Journal of Cellular Biochemistry, 108, 839–850. https://doi.org/10.1002/jcb.22312

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, D. Y., Pan, Y., Zhang, C., Yan, B. X., Yu, S. S., Wu, D. L., Shi, M. M., Shi, K., Cai, X. X., Zhou, S. S., Wang, J. B., Pan, J. P., & Zhang, L. H. (2013). Wnt/beta-catenin signaling induces the aging of mesenchymal stem cells through promoting the ROS production (in Eng). Molecular and Cellular Biochemistry, 374, 13–20. https://doi.org/10.1007/s11010-012-1498-1

    Article  CAS  PubMed  Google Scholar 

  15. Vaziri, H., Dragowska, W., Allsopp, R. C., Thomas, T. E., Harley, C. B., & Lansdorp, P. M. (1994). Evidence for a mitotic clock in human hematopoietic stem cells: Loss of telomeric DNA with age (in Eng). Proceedings of the National Academy of Sciences of the United States of America, 91, 9857–9860. https://doi.org/10.1073/pnas.91.21.9857

  16. Cheng, H., Qiu, L., Ma, J., Zhang, H., Cheng, M., Li, W., Zhao, X., & Liu, K. (2011). Replicative senescence of human bone marrow and umbilical cord derived mesenchymal stem cells and their differentiation to adipocytes and osteoblasts (in Eng). Molecular Biology Reports, 38, 5161–5168. https://doi.org/10.1007/s11033-010-0665-2

    Article  CAS  PubMed  Google Scholar 

  17. Dovey, O. M., Foster, C. T., & Cowley, S. M. (2010). Histone deacetylase 1 (HDAC1), but not HDAC2, controls embryonic stem cell differentiation (in Eng). Proceedings of the National Academy of Sciences of the United States of America, 107, 8242–8247 https://doi.org/10.1073/pnas.1000478107

  18. Gharibi, B., & Hughes, F. J. (2012). Effects of medium supplements on proliferation, differentiation potential, and in vitro expansion of mesenchymal stem cells (in Eng). Stem Cells Translational Medicine, 1, 771–782. https://doi.org/10.5966/sctm.2010-0031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tsutsumi, S., Shimazu, A., Miyazaki, K., Pan, H., Koike, C., Yoshida, E., Takagishi, K., & Kato, Y. (2001). Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF (in Eng). Biochemical and Biophysical Research Communications, 288, 413–419. https://doi.org/10.1006/bbrc.2001.5777

    Article  CAS  PubMed  Google Scholar 

  20. Coutu, D. L., Francois, M., & Galipeau, J. (2011). Inhibition of cellular senescence by developmentally regulated FGF receptors in mesenchymal stem cells (in Eng). Blood, 117, 6801–6812. https://doi.org/10.1182/blood-2010-12-321539

    Article  CAS  PubMed  Google Scholar 

  21. Mareschi, K., Ferrero, I., Rustichelli, D., Aschero, S., Gammaitoni, L., Aglietta, M., Madon, E., & Fagioli, F. (2006). Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow (in Eng). Journal of Cellular Biochemistry, 97, 744–754. https://doi.org/10.1002/jcb.20681

    Article  CAS  PubMed  Google Scholar 

  22. Flores-Torales, E., Orozco-Barocio, A., Gonzalez-Ramella, O. R., Carrasco-Yalan, A., Gazarian, K., & Cuneo-Pareto, S. (2010). The CD271 expression could be alone for establisher phenotypic marker in bone marrow derived mesenchymal stem cells (in Eng). Folia Histochemica et Cytobiologica, 48, 682–686. https://doi.org/10.2478/v10042-010-0063-6

    Article  PubMed  Google Scholar 

  23. Sacchetti, B., Funari, A., Michienzi, S., Di Cesare, S., Piersanti, S., Saggio, I., Tagliafico, E., Ferrari, S., Robey, P. G., Riminucci, M., & Bianco, P. (2007). Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment (in Eng). Cell, 131, 324–336. https://doi.org/10.1016/j.cell.2007.08.025

    Article  CAS  PubMed  Google Scholar 

  24. Ishii, M., Koike, C., Igarashi, A., Yamanaka, K., Pan, H., Higashi, Y., Kawaguchi, H., Sugiyama, M., Kamata, N., Iwata, T., Matsubara, T., Nakamura, K., Kurihara, H., Tsuji, K., & Kato, Y. (2005). Molecular markers distinguish bone marrow mesenchymal stem cells from fibroblasts (in Eng). Biochemical and Biophysical Research Communications, 332, 297–303. https://doi.org/10.1016/j.bbrc.2005.04.118

    Article  CAS  PubMed  Google Scholar 

  25. Igarashi, A., Segoshi, K., Sakai, Y., Pan, H., Kanawa, M., Higashi, Y., Sugiyama, M., Nakamura, K., Kurihara, H., Yamaguchi, S., Tsuji, K., Kawamoto, T., & Kato, Y. (2007). Selection of common markers for bone marrow stromal cells from various bones using real-time RT-PCR: Effects of passage number and donor age (in Eng). Tissue Engineering, 13, 2405–2417. https://doi.org/10.1089/ten.2006.0340

    Article  CAS  PubMed  Google Scholar 

  26. Kubo, H., Shimizu, M., Taya, Y., Kawamoto, T., Michida, M., Kaneko, E., Igarashi, A., Nishimura, M., Segoshi, K., Shimazu, Y., Tsuji, K., Aoba, T., & Kato, Y. (2009). Identification of mesenchymal stem cell (MSC)-transcription factors by microarray and knockdown analyses, and signature molecule-marked MSC in bone marrow by immunohistochemistry (in Eng). Genes to Cells, 14, 407–424. https://doi.org/10.1111/j.1365-2443.2009.01281.x

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, D. Y., Wang, H. J., & Tan, Y. Z. (2011). Wnt/beta-catenin signaling induces the aging of mesenchymal stem cells through the DNA damage response and the p53/p21 pathway (in Eng). PLoS ONE, 6, e21397. https://doi.org/10.1371/journal.pone.0021397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fan, J., An, X., Yang, Y., Xu, H., Fan, L., Deng, L., Li, T., Weng, X., Zhang, J., & Chunhua Zhao, R. (2018). MiR-1292 targets FZD4 to regulate senescence and osteogenic differentiation of stem cells in TE/SJ/mesenchymal tissue system via the Wnt/beta-catenin pathway (in Eng). Aging and Disease, 9, 1103–1121. https://doi.org/10.14336/ad.2018.1110

    Article  PubMed  PubMed Central  Google Scholar 

  29. Xia, W., Zhuang, L., Deng, X., & Hou, M. (2017). Long noncoding RNAp21 modulates cellular senescence via the Wnt/betacatenin signaling pathway in mesenchymal stem cells (in Eng). Molecular Medicine Reports, 16, 7039–7047. https://doi.org/10.3892/mmr.2017.7430

    Article  CAS  PubMed  Google Scholar 

  30. Fujimoto, M., Mano, Y., Anai, M., Yamamoto, S., Fukuyo, M., Aburatani, H., & Kaneda, A. (2016). Epigenetic alteration to activate Bmp2-Smad signaling in Raf-induced senescence (in Eng). World Journal of Biological Chemistry, 7, 188–205. https://doi.org/10.4331/wjbc.v7.i1.188

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hayashi, Y., Hsiao, E. C., Sami, S., Lancero, M., Schlieve, C. R., Nguyen, T., Yano, K., Nagahashi, A., Ikeya, M., Matsumoto, Y., Nishimura, K., Fukuda, A., Hisatake, K., Tomoda, K., Asaka, I., Toguchida, J., Conklin, B. R., & Yamanaka, S. (2016). BMP-SMAD-ID promotes reprogramming to pluripotency by inhibiting p16/INK4A-dependent senescence (in Eng). Proceedings of the National Academy of Sciences of the United States of America, 113, 13057–13062. https://doi.org/10.1073/pnas.1603668113

  32. Lepletier, A., Hun, M. L., Hammett, M. V., Wong, K., Naeem, H., Hedger, M., Loveland, K., & Chidgey, A. P. (2019). Interplay between follistatin, activin A, and BMP4 signaling regulates postnatal thymic epithelial progenitor cell differentiation during aging (in Eng). Cell Reports, 27, 3887–3901.e4. https://doi.org/10.1016/j.celrep.2019.05.045

    Article  CAS  PubMed  Google Scholar 

  33. Whissell, G., Montagni, E., Martinelli, P., Hernando-Momblona, X., Sevillano, M., Jung, P., Cortina, C., Calon, A., Abuli, A., Castells, A., Castellvi-Bel, S., Nacht, A. S., Sancho, E., Stephan-Otto Attolini, C., Vicent, G. P., Real, F. X., & Batlle, E. (2014). The transcription factor GATA6 enables self-renewal of colon adenoma stem cells by repressing BMP gene expression (in Eng). Nature Cell Biology, 16, 695–707. https://doi.org/10.1038/ncb2992

    Article  CAS  PubMed  Google Scholar 

  34. Xu, L., Huang, S., Hou, Y., Liu, Y., Ni, M., Meng, F., Wang, K., Rui, Y., Jiang, X., & Li, G. (2015). Sox11-modified mesenchymal stem cells (MSCs) accelerate bone fracture healing: Sox11 regulates differentiation and migration of MSCs (in Eng). FASEB Journal, 29, 1143–152. https://doi.org/10.1096/fj.14-254169

    Article  CAS  PubMed  Google Scholar 

  35. Iwata, T., Kawamoto, T., Sasabe, E., Miyazaki, K., Fujimoto, K., Noshiro, M., Kurihara, H., & Kato, Y. (2006). Effects of overexpression of basic helix-loop-helix transcription factor Dec1 on osteogenic and adipogenic differentiation of mesenchymal stem cells (in Eng). European Journal of Cell Biology, 85, 423–431. https://doi.org/10.1016/j.ejcb.2005.12.007

    Article  CAS  PubMed  Google Scholar 

  36. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays (in Eng). Journal of Immunological Methods, 65, 55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  37. Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E. E., Linskens, M., Rubelj, I., Pereira-Smith, O., et al. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo (in Eng). Proceedings of the National Academy of Sciences of the United States of America, 92, 9363–9367. https://doi.org/10.1073/pnas.92.20.9363

  38. Maddox, J. R., Liao, X., Li, F., & Niyibizi, C. (2009). Effects of culturing on the stability of the putative murine adipose derived stem cells markers (in Eng). The Open Stem Cell Journal, 1, 54–61. https://doi.org/10.2174/1876893800901010054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gronthos, S., & Zannettino, A. C. (2008). A method to isolate and purify human bone marrow stromal stem cells (in Eng). Methods in Molecular Biology, 449, 45–57. https://doi.org/10.1007/978-1-60327-169-1_3

    Article  CAS  PubMed  Google Scholar 

  40. Bakopoulou, A., Apatzidou, D., Aggelidou, E., Gousopoulou, E., Leyhausen, G., Volk, J., Kritis, A., Koidis, P., & Geurtsen, W. (2017). Isolation and prolonged expansion of oral mesenchymal stem cells under clinical-grade, GMP-compliant conditions differentially affects “stemness” properties (in Eng). Stem Cell Research & Therapy, 8, 247. https://doi.org/10.1186/s13287-017-0705-0

    Article  CAS  Google Scholar 

  41. Lee, R. H., Seo, M. J., Pulin, A. A., Gregory, C. A., Ylostalo, J., & Prockop, D. J. (2009). The CD34-like protein PODXL and alpha6-integrin (CD49f) identify early progenitor MSCs with increased clonogenicity and migration to infarcted heart in mice (in Eng). Blood, 113, 816–826. https://doi.org/10.1182/blood-2007-12-128702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lv, F. J., Tuan, R. S., Cheung, K. M., & Leung, V. Y. (2014). Concise review: The surface markers and identity of human mesenchymal stem cells (in Eng). Stem Cells, 32, 1408–1419. https://doi.org/10.1002/stem.1681

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, Y., Goss, A. M., Cohen, E. D., Kadzik, R., Lepore, J. J., Muthukumaraswamy, K., Yang, J., DeMayo, F. J., Whitsett, J. A., Parmacek, M. S., & Morrisey, E. E. (2008). A Gata6-Wnt pathway required for epithelial stem cell development and airway regeneration (in Eng). Nature Genetics, 40, 862–870. https://doi.org/10.1038/ng.157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Larson, B. L., Ylostalo, J., Lee, R. H., Gregory, C., & Prockop, D. J. (2010). Sox11 is expressed in early progenitor human multipotent stromal cells and decreases with extensive expansion of the cells (in Eng). Tissue Engineering Part A, 16, 3385–3394. https://doi.org/10.1089/ten.tea.2010.0085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kaneda-Ikeda, E., Iwata, T., Mizuno, N., Nagahara, T., Kajiya, M., Takeda, K., Hirata, R., Ishida, S., Yoshioka, M., Fujita, T., Kawaguchi, H., & Kurihara, H. (2020). Periodontal ligament cells regulate osteogenesis via miR-299-5p in mesenchymal stem cells (in Eng). Differentiation; Research in Biological Diversity, 112, 47–57. https://doi.org/10.1016/j.diff.2020.01.001

    Article  CAS  PubMed  Google Scholar 

  46. Satija, N. K., Gurudutta, G. U., Sharma, S., Afrin, F., Gupta, P., Verma, Y. K., Singh, V. K., & Tripathi, R. P. (2007). Mesenchymal stem cells: Molecular targets for tissue engineering (in Eng). Stem Cells and Development, 16, 7–23. https://doi.org/10.1089/scd.2006.9998

    Article  CAS  PubMed  Google Scholar 

  47. Ishitani, T., Ninomiya-Tsuji, J., Nagai, S., Nishita, M., Meneghini, M., Barker, N., Waterman, M., Bowerman, B., Clevers, H., Shibuya, H., & Matsumoto, K. (1999). The TAK1-NLK-MAPK-related pathway antagonizes signalling between beta-catenin and transcription factor TCF (in Eng). Nature, 399, 798–802. https://doi.org/10.1038/21674

    Article  CAS  PubMed  Google Scholar 

  48. Fromigue, O., Marie, P. J., & Lomri, A. (1998). Bone morphogenetic protein-2 and transforming growth factor-beta2 interact to modulate human bone marrow stromal cell proliferation and differentiation (in Eng). Journal of Cellular Biochemistry, 68, 411–426

    Article  CAS  PubMed  Google Scholar 

  49. Cheng, C. C., Chang, S. J., Chueh, Y. N., Huang, T. S., Huang, P. H., Cheng, S. M., Tsai, T. N., Chen, J. W., & Wang, H. W. (2013). Distinct angiogenesis roles and surface markers of early and late endothelial progenitor cells revealed by functional group analyses (in Eng). BMC Genomics, 14, 182. https://doi.org/10.1186/1471-2164-14-182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gits, C. M., van Kuijk, P. F., Jonkers, M. B., Boersma, A. W., van Ijcken, W. F., Wozniak, A., Sciot, R., Rutkowski, P., Schoffski, P., Taguchi, T., Mathijssen, R. H., Verweij, J., Sleijfer, S., Debiec-Rychter, M., & Wiemer, E. A. (2013). MiR-17-92 and miR-221/222 cluster members target KIT and ETV1 in human gastrointestinal stromal tumours (in Eng). British Journal of Cancer, 109, 1625–1635. https://doi.org/10.1038/bjc.2013.483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rong, L., Liu, J., Qi, Y., Graham, A. M., Parmacek, M. S., & Li, S. (2012). GATA-6 promotes cell survival by up-regulating BMP-2 expression during embryonic stem cell differentiation (in Eng). Molecular Biology of the Cell, 23, 3754–3763. https://doi.org/10.1091/mbc.E12-04-0313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liang, D., Zhen, L., Yuan, T., Huang, J., Deng, F., Wuyahan, Zhang, H., Pan, L., Liu, Y., The, E., Yu, Z., Zhu, W., Zhang, Y., Li, L., Peng, L., Li, J., & Chen, Y. H. (2014). miR-10a regulates proliferation of human cardiomyocyte progenitor cells by targeting GATA6 (in Eng). PLoS ONE, 9, e103097 https://doi.org/10.1371/journal.pone.0103097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shirvani, S., Xiang, F., Koibuchi, N., & Chin, M. T. (2006). CHF1/Hey2 suppresses SM-MHC promoter activity through an interaction with GATA-6 (in Eng). Biochemical and Biophysical Research Communications, 339, 151–156. https://doi.org/10.1016/j.bbrc.2005.10.190

    Article  CAS  PubMed  Google Scholar 

  54. Kormish, J. D., Sinner, D., & Zorn, A. M. (2010). Interactions between SOX factors and Wnt/beta-catenin signaling in development and disease (in Eng). Developmental Dynamics, 239, 56–68. https://doi.org/10.1002/dvdy.22046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li, X., & Bai, X. Z. (2008). [NF-kappaB modulates activation of the BMP-2 gene by trichostatin A] (in Rus). Molekuliarnaia biologiia, 42, 990–906

  56. Swiss, V. A., Nguyen, T., Dugas, J., Ibrahim, A., Barres, B., Androulakis, I. P., & Casaccia, P. (2011). Identification of a gene regulatory network necessary for the initiation of oligodendrocyte differentiation (in Eng). PLoS ONE, 6, e18088. https://doi.org/10.1371/journal.pone.0018088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Iwata, T., Mizuno, N., Nagahara, T., Kaneda-Ikeda, E., Kajiya, M., Kitagawa, M., Takeda, K., Yoshioka, M., Yagi, R., Takata, T., & Kurihara, H. (2020). Identification of regulatory mRNA and microRNA for differentiation into cementoblasts and periodontal ligament cells (in Eng). Journal of Periodontal Research. https://doi.org/10.1111/jre.12794

  58. Kaneda-Ikeda, E., Iwata, T., Mizuno, N., Nagahara, T., Kajiya, M., Ouhara, K., Yoshioka, M., Ishida, S., Kawaguchi, H., & Kurihara, H. (2020). Regulation of osteogenesis via miR-101-3p in mesenchymal stem cells by human gingival fibroblasts (in Eng). Journal of Bone and Mineral Metabolism, 38, 442–455. https://doi.org/10.1007/s00774-019-01080-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Hideki Shiba for helpful discussion. A portion of this work was carried out with the material support of the Research Facility of Hiroshima University Faculty of Dentistry.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by T.I., N.M., S.I., M.K., T.N., E.K.-I., M.Y., S.M., and K.O. H.K. supervised all aspects of the study as the senior investigator and director of the laboratory. The first draft of the paper was written by T.I. and all authors commented on previous versions of the paper. All authors read and approved the final paper.

Corresponding author

Correspondence to T. Iwata.

Ethics declarations

Conflict of Interest

The authors declare no competing interest.

Ethical Approval

This study was approved by the Ethics Committee of Hiroshima University Faculty of Dentistry (Hiroshima, Japan; Approval Numbers: E-19 and E-422-2) and performed in accordance with the Declaration of Helsinki (2008) of the World Medical Association.

Informed Consent

Informed consent was obtained from all donors.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwata, T., Mizuno, N., Ishida, S. et al. Functional Regulatory Mechanisms Underlying Bone Marrow Mesenchymal Stem Cell Senescence During Cell Passages. Cell Biochem Biophys 79, 321–336 (2021). https://doi.org/10.1007/s12013-021-00969-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-021-00969-y

Keywords

Navigation