Skip to main content

Advertisement

Log in

The Effects of Iodinated Radiographic Contrast Media on Multidrug-resistant K562/Dox Cells: Mitochondria Impairment and P-glycoprotein Inhibition

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Iodinated radiographic contrast media is used in cancer radiography for cancer diagnosis. The aim of this present study was to examine five iodinated radiographic contrast media (IRCM) (i.e., iohexol, iopamidol, iobitridol, ioxaglate, and iodixanol) in terms of their cytotoxicity, mitochondria membrane potential (ΔΨm), and P-glycoprotein function in multidrug resistant K562/Dox cancer cells and corresponding sensitive cancer cells. The cytotoxicity was determined by colorimetric resazurin reduction assay. The ΔΨm and P-glycoprotein function was measured using a noninvasive functional spectrofluorometry. Rhodamine B, fluorescence probe, was used to estimate ΔΨm. The kinetic of P-glycoprotein-mediated efflux pirarubicin was used to monitor P-glycoprotein function in multidrug resistant (MDR) cancer cells. The results showed that ioxaglate and iodixanol show similar efficacy in MDR cancer cells and for their corresponding sensitive cancer cells. Iopamidol, iohexol, and iobitridol showed higher efficacy in MDR cancer cells than for the corresponding sensitive cancer cells by approximately 2 fold. The results also showed no significant change in the |ΔΨm| values in treated K562 and K562/Dox cancer cells when compared to the non-treated K562 and K562/Dox cancer cells. However, there were notable changes detected for iobitridol and iodixanol at 50 mgI/mL. Similarly, the results showed significant differences in P-glycoprotein function of K562/Dox cancer cells after treatment with IRCM when compared to the non-treated K562/Dox cancer cells, with iohexol and iodixanol being the notable exceptions once again. In this present study, IRCM exhibited cytotoxicity on MDR cancer cells and their corresponding sensitive cancer cells. IRCM also showed potential as an anticancer agent in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, T., & Thun, M. J. (2008). Cancer statistics, 2008. CA: A Cancer Journal for Clinicians, 58(2), 71–96.

    Google Scholar 

  2. SiegelR., Naishadham, DJemal, A. (2012). Cancer statistics for Hispanics/Latinos, 2012. CA: A Cancer Journal for Clinicians, 62(5), 283–298.

    Google Scholar 

  3. Siegel, R. L., Miller, K. D., & Jemal, A. (2015). Cancer statistics, 2015. CA: A Cancer Journal for Clinicians, 65(1), 5–29.

    Google Scholar 

  4. Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D. M., Forman, D., & Bray, F. (2015). Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer, 136(5), E359–386.

    Article  CAS  PubMed  Google Scholar 

  5. Siegel, R. L., Miller, K. D., & Jemal, A. (2018). Cancer statistics, 2018. CA: A Cancer Journal for Clinicians, 68(1), 7–30.

    Google Scholar 

  6. Chang, X. B. (2010). Molecular mechanism of ATP-dependent solute transport by multidrug resistance-associated protein 1. Methods in Molecular Biology, 596, 223–249.

    Article  CAS  PubMed  Google Scholar 

  7. Applied Radiologyaisner, D. L., Marshall, C. B. (2012). Molecular pathology of non-small cell lung cancer: a practical guide. American Journal of Clinical Pathology, 138(3), 332–346.

    Article  Google Scholar 

  8. Khan, M., Maryam, A., Mehmood, T., Zhang, Y., & Ma, T. (2015). Enhancing activity of anticancer drugs in multidrug resistant tumors by modulating p-glycoprotein through dietary nutraceuticals. Asian Pacific Journal of Cancer Prevention, 16(16), 6831–6839.

    Article  PubMed  Google Scholar 

  9. Mitscher, L. A., Pillai, S. P., Gentry, E. J., & Shankel, D. M. (1999). Multiple drug resistance. Medicinal Research Reviews, 19(6), 477–496.

    Article  CAS  PubMed  Google Scholar 

  10. Goldstein, L. G., Pastanb, I., & Gottesman, M. M. (1992). Multidrug resistance in human cancer. Critical Reviews in Oncology/Hematology, 12, 11.

    Article  Google Scholar 

  11. Marie, J. P., Zittoun, R., & Sikic, B. I. (1991). Multidrug resistance (mdr1) gene expression in adult acute leukemias: correlations with treatment outcome and in vitro drug sensitivity. Blood, 78(3), 586–592.

    CAS  PubMed  Google Scholar 

  12. Nobili, S., Landini, I., Mazzei, T., & Mini, E. (2012). Overcoming tumor multidrug resistance using drugs able to evade P-glycoprotein or to exploit its expression. Medicinal Research Reviews, 32(6), 1220–1262.

    Article  CAS  PubMed  Google Scholar 

  13. Tan, B., Piwnica-Worms, D., & Ratner, L. (2000). Multidrug resistance transporters and modulation. Current Opinion in Oncology, 12(5), 450–458.

    Article  CAS  PubMed  Google Scholar 

  14. Palmeira, A., Sousa, E., Vasconcelos, M. H., & Pinto, M. M. (2012). Three decades of P-gp inhibitors: skimming through several generations and scaffolds. Current Medicinal Chemistry, 19(13), 1946–2025.

    Article  CAS  PubMed  Google Scholar 

  15. Dickinson, M. C., & Kam, P. C. (2008). Intravascular iodinated contrast media and the anaesthetist. Anaesthesia, 63(6), 626–634.

    Article  CAS  PubMed  Google Scholar 

  16. Thomsen, H. S., & Morcos, S. K. (2000). Radiographic contrast media. BJU International, 86(Suppl 1), 1–10.

    PubMed  Google Scholar 

  17. Andreucci, M., Faga, T., Pisani, A., Sabbatini, M., Russo, D., & Michael, A. (2014). The choice of the iodinated radiographic contrast media to prevent contrast-induced nephropathy. Advances in Nephrology, 2014, 11.

    Article  Google Scholar 

  18. Snitwongse Na Ayudhya, S., & Mankhetkorn, S. (2009). Diatrizoate, iopromide and iotrolan enhanced cytotoxicity of daunorubicin in multidrug resistant K562/adr cells: Impaired the mitochondrial and inhibited the P-glycoprotein function. American Journal of Applied Sciences, 6(3), 484–491.

    Article  Google Scholar 

  19. Reungpatthanaphong, P., & Mankhetkorn, S. (2002). Modulation of multidrug resistance by artemisinin, artesunate and dihydroartemisinin in K562/adr and GLC4/adr resistant cell lines. Biological and Pharmaceutical Bulletin, 25(12), 1555–1561.

    Article  CAS  PubMed  Google Scholar 

  20. Reungpatthanaphong, P., Dechsupa, S., Meesungnoen, J., Loetchutinat, C., & Mankhetkorn, S. (2003). Rhodamine B as a mitochondrial probe for measurement and monitoring of mitochondrial membrane potential in drug-sensitive and resistant cells. Journal of Biochemical and Biophysical Methods, 57(1), 1–16.

    Article  CAS  PubMed  Google Scholar 

  21. Kothan, S., Dechsupa, S., Leger, G., Moretti, J. L., Vergote, J., & Mankhetkorn, S. (2004). Spontaneous mitochondrial membrane potential change during apoptotic induction by quercetin in K562 and K562/adr cells. Canadian Journal of Physiology and Pharmacology, 82(12), 1084–1090.

    Article  CAS  PubMed  Google Scholar 

  22. Tungjai, M., Phathakanon, N., & Rithidech, K. N. (2017). Effects of medical diagnostic low-dose X rays on human lymphocytes: mitochondrial membrane potential, apoptosis and cell cycle. Health Physics, 112(5), 458–464.

    Article  CAS  PubMed  Google Scholar 

  23. Ko, G. J., Bae, S. Y., Hong, Y. A., Pyo, H. J., & Kwon, Y. J. (2016). Radiocontrast-induced nephropathy is attenuated by autophagy through regulation of apoptosis and inflammation. Human and Experimental Toxicology, 35(7), 724–736.

    Article  CAS  PubMed  Google Scholar 

  24. Tongqiang, L., Shaopeng, L., Xiaofang, Y., Nana, S., Xialian, X., Jiachang, H., Ting, Z., & Xiaoqiang, D. (2016). Salvianolic acid B prevents iodinated contrast media-induced acute renal injury in rats via the PI3K/Akt/Nrf2 pathway. Oxidative Medicine and Cellular Longevity, 2016, 7079487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sawmiller, C. J., Powell, R. J., Quader, M., Dudrick, S. J., & Sumpio, B. E. (1998). The differential effect of contrast agents on endothelial cell and smooth muscle cell growth in vitro. Journal of Vascular Surgery, 27(6), 1128–1140.

    Article  CAS  PubMed  Google Scholar 

  26. Zhao, Y., Tao, Z., Xu, Z., Tao, Z., Chen, B., Wang, L., Li, C., Chen, L., Jia, Q., Jia, E., Zhu, T., & Yang, Z. (2011). Toxic effects of a high dose of non-ionic iodinated contrast media on renal glomerular and aortic endothelial cells in aged rats in vivo. Toxicology Letters, 202(3), 253–260.

    Article  CAS  PubMed  Google Scholar 

  27. Lee, S. Y., Rhee, C. M., Leung, A. M., Braverman, L. E., Brent, G. A., & Pearce, E. N. (2015). A review: radiographic iodinated contrast media-induced thyroid dysfunction. Journal of Clinical Endocrinology and Metabolism, 100(2), 376–383.

    Article  CAS  PubMed  Google Scholar 

  28. Lei, R., Zhao, F., Tang, C. Y., Luo, M., Yang, S. K., Cheng, W., Li, X. W., & Duan, S. B. (2018). Mitophagy plays a protective role in iodinated contrast-induced acute renal tubular epithelial cells injury. Cellular Physiology and Biochemistry, 46(3), 975–985.

    Article  CAS  PubMed  Google Scholar 

  29. Liu, N., Lei, R., Tang, M. M., Cheng, W., Luo, M., Xu, Q., & Duan, S. B. (2017). Autophagy is activated to protect renal tubular epithelial cells against iodinated contrast mediainduced cytotoxicity. Mol Med Rep, 16(6), 8277–8282.

    Article  CAS  PubMed  Google Scholar 

  30. Ronda, N., Poti, F., Palmisano, A., Gatti, R., Orlandini, G., Maggiore, U., Cabassi, A., Regolisti, G., & Fiaccadori, E. (2013). Effects of the radiocontrast agent iodixanol on endothelial cell morphology and function. Vascular Pharmacology, 58(1-2), 39–47.

    Article  CAS  PubMed  Google Scholar 

  31. Fanning, N. F., Manning, B. J., Buckley, J., & Redmond, H. P. (2002). Iodinated contrast media induce neutrophil apoptosis through a mitochondrial and caspase mediated pathway. British Journal of Radiology, 75(899), 861–873.

    Article  CAS  PubMed  Google Scholar 

  32. Hayakawa, K., Nakamura, T., & Shimizu, Y. (1999). Role of hemolysis in potassium release by iodinated contrast medium. European Radiology, 9(7), 1357–1361.

    Article  CAS  PubMed  Google Scholar 

  33. Kim, K. H., Park, J. Y., Park, H. S., Kuh, S. U., Chin, D. K., Kim, K. S., & Cho, Y. E. (2015). Which iodinated contrast media is the least cytotoxic to human disc cells? Spine J, 15(5), 1021–1027.

    Article  PubMed  Google Scholar 

  34. Kerl, J. M., Nguyen, S. A., Lazarchick, J., Powell, J. W., Oswald, M. W., Alvi, F., Costello, P., Vogl, T. J., & Schoepf, U. J. (2008). Iodinated contrast media: effect of osmolarity and injection temperature on erythrocyte morphology in vitro. Acta Radiologica, 49(3), 337–343.

    Article  CAS  PubMed  Google Scholar 

  35. Mannechez, A., Reungpatthanaphong, P., De Certaines, J. D., Leray, G., & Le Moyec, L. (2005). Proton NMR visible mobile lipid signals in sensitive and multidrug-resistant K562 cells are modulated by rafts. Cancer Cell International, 5(1), 2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Reungpatthanaphong, P., Marbeuf-Gueye, C., Le Moyec, L., Salerno, M., & Garnier-Suillerot, A. (2004). Decrease of P-glycoprotein activity in K562/ADR cells by MbetaCD and filipin and lack of effect induced by cholesterol oxidase indicate that this transporter is not located in rafts. Journal of Bioenergetics and Biomembranes, 36(6), 533–543.

    Article  CAS  PubMed  Google Scholar 

  37. Franke, R. P., Scharnweber, T., Fuhrmann, R., Wenzel, F., Kruger, A., Mrowietz, C., & Jung, F. (2014). Effect of radiographic contrast media on the spectrin/band3-network of the membrane skeleton of erythrocytes. PloS ONE, 9(2), e89512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Franke, R. P., Kruger, A., Scharnweber, T., Wenzel, F., & Jung, F. (2014). Effects of radiographic contrast media on the micromorphology of the junctional complex of erythrocytes visualized by immunocytology. International Journal of Molecular Sciences, 15(9), 16134–16152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gerka, U., Frankeb, Rp, & Jungc, F. (2015). Effect of radiographic contrast media (Iodixanol, Iobitridol) on hemolysis. Journal of Cellular Biotechnology, 1, 179–182. 2016.

    Article  Google Scholar 

  40. Losco, P., Nash, G., Stone, P., & Ventre, J. (2001). Comparison of the effects of radiographic contrast media on dehydration and filterability of red blood cells from donors homozygous for hemoglobin A or hemoglobin S. American Journal of Hematology, 68(3), 149–158.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a Faculty of Associated Medical Sciences, Chiang Mai University, Thailand

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Montree Tungjai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Supawat, B., Udomtanakunchai, C., Kothan, S. et al. The Effects of Iodinated Radiographic Contrast Media on Multidrug-resistant K562/Dox Cells: Mitochondria Impairment and P-glycoprotein Inhibition. Cell Biochem Biophys 77, 157–163 (2019). https://doi.org/10.1007/s12013-019-00868-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-019-00868-3

Keywords

Navigation