Abstract
Telomere DNA can form specialized nucleoprotein structure with telomere-associated proteins to hide free DNA ends or G-quadruplex structures under certain conditions especially in presence of G-quadruplex ligand. Telomere DNA is transcribed to form non-coding telomere repeat-containing RNA (TERRA) whose biogenesis and function is poorly understood. Our aim was to find the role of telomere-associated proteins and telomere structures in TERRA transcription. We silenced four [two shelterin (TRF1, TRF2) and two non-shelterin (PARP-1, SLX4)] telomere-associated genes using siRNA and verified depletion in protein level. Knocking down of one gene modulated expression of other telomere-associated genes and increased TERRA from 10q, 15q, XpYp and XqYq chromosomes in A549 cells. Telomere was destabilized or damaged by G-quadruplex ligand pyridostatin (PDS) and bleomycin. Telomere dysfunction-induced foci (TIFs) were observed for each case of depletion of proteins, treatment with PDS or bleomycin. TERRA level was elevated by PDS and bleomycin treatment alone or in combination with depletion of telomere-associated proteins.






Similar content being viewed by others
References
Blackburn, E. H., & Gall, J. G. (1978). A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. Journal of Molecular Biology, 120, 33–53.
Morin, G. B. (1989). The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell, 59, 521–529. https://doi.org/10.1016/0092-8674(89)90035-4.
Greider, C. W. (1999). Telomeres do D-loop–T-loop. Cell, 97, 419–422. https://doi.org/10.1016/S0092-8674(00)80750-3.
Griffith, J. D., Comeau, L., Rosenfield, S., Stansel, R. M., Bianchi, A., Moss, H., & de Lange, T. (1999). Mammalian telomeres end in a large duplex loop. Cell, 97, 503–514. https://doi.org/10.1016/S0092-8674(00)80760-6.
O’Connor, M. S., Safari, A., Liu, D., Qin, J., & Songyang, Z. (2004). The human Rap1 protein complex and modulation of telomere length. The Journal of Biological Chemistry, 279, 28585–28591. https://doi.org/10.1074/jbc.M312913200.
O’Connor, M. S., Safari, A., Xin, H., Liu, D., & Songyang, Z. (2006). A critical role for TPP1 and TIN2 interaction in high-order telomeric complex assembly. Proceedings of the National Academy of Sciences, 103, 11874–11879. https://doi.org/10.1073/pnas.0605303103.
Chen, Y., Yang, Y., van Overbeek, M., Donigian, J. R., Baciu, P., de Lange, T., & Lei, M. (2008). A shared docking motif in TRF1 and TRF2 used for differential recruitment of telomeric proteins. Science, 319, 1092–1096. https://doi.org/10.1126/science.1151804.
de Lange, T. (2005). Shelterin: the protein complex that shapes and safeguards human telomeres. Genes & Development, 19, 2100–2110. https://doi.org/10.1101/gad.1346005.
Lange, T. De (2010). How shelterin solves the telomere end-protection problem. Cold Spring Harbor Symposia on Quantitative Biology, 75, 167–177. https://doi.org/10.1101/sqb.2010.75.017.
Smogorzewska, A., van Steensel, B., Bianchi, A., Oelmann, S., Schaefer, M. R., Schnapp, G., & de Lange, T. (2000). Control of human telomere length by TRF1 and TRF2. Molecular and Cellular Biology, 20, 1659–1668. https://doi.org/10.1128/MCB.20.5.1659-1668.2000.
Sfeir, A., Kosiyatrakul, S. T., Hockemeyer, D., MacRae, S. L., Karlseder, J., Schildkraut, C. L., & de Lange, T. (2009). Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell, 138, 90–103. https://doi.org/10.1016/j.cell.2009.06.021.
Zaug, A. J., Podell, E. R., & Cech, T. R. (2005). Human POT1 disrupts telomeric G-quadruplexes allowing telomerase extension in vitro. Proceedings of the National Academy of Sciences, 102, 10864–10869. https://doi.org/10.1073/pnas.0504744102.
Hockemeyer, D., Sfeir, A. J., Shay, J. W., Wright, W. E., & de Lange, T. (2005). POT1 protects telomeres from a transient DNA damage response and determines how human chromosomes end. The EMBO Journal, 24, 2667–2678. https://doi.org/10.1038/sj.emboj.7600733.
Bae, N. S., & Baumann, P. (2007). A RAP1/TRF2 complex inhibits nonhomologous end-joining at human telomeric DNA ends. Molecular Cell, 26, 323–334. https://doi.org/10.1016/j.molcel.2007.03.023.
Stansel, R. M., de Lange, T., & Griffith, J. D. (2001). T-loop assembly in vitro involves binding of TRF2 near the 3’ telomeric overhang. The EMBO Journal, 20, 5532–5540. https://doi.org/10.1093/emboj/20.19.5532.
Ye, J. Z.-S., Donigian, J. R., van Overbeek, M., Loayza, D., Luo, Y., Krutchinsky, A. N., Chait, B. T., & de Lange, T. (2004). TIN2 binds TRF1 and TRF2 simultaneously and stabilizes the TRF2 complex on telomeres. The Journal of Biological Chemistry, 279, 47264–47271. https://doi.org/10.1074/jbc.M409047200.
Abreu, E., Aritonovska, E., Reichenbach, P., Cristofari, G., Culp, B., Terns, R. M., Lingner, J., & Terns, M. P. (2010). TIN2-tethered TPP1 recruits human telomerase to telomeres in vivo. Molecular and Cellular Biology, 30, 2971–2982. https://doi.org/10.1128/MCB.00240-10.
Takai, K. K., Kibe, T., Donigian, J. R., Frescas, D., & de Lange, T. (2011). Telomere protection by TPP1/POT1 requires tethering to TIN2. Molecular Cell, 44, 647–659. https://doi.org/10.1016/j.molcel.2011.08.043.
Gomez, M., Wu, J., Schreiber, V., Dunlap, J., Dantzer, F., Wang, Y., & Liu, Y. (2006). PARP1 Is a TRF2-associated poly(ADP-ribose)polymerase and protects eroded telomeres. Molecular Biology of the Cell, 17, 1686–1696. https://doi.org/10.1091/mbc.E05-07-0672.
Beneke, S., Cohausz, O., Malanga, M., Boukamp, P., Althaus, F., & Bürkle, A. (2008). Rapid regulation of telomere length is mediated by poly(ADP-ribose) polymerase-1. Nucleic Acids Research, 36, 6309–6317. https://doi.org/10.1093/nar/gkn615.
Wang, X., Liu, L., Montagna, C., Ried, T., & Deng, C.-X. (2007). Haploinsufficiency of Parp1 accelerates Brca1-associated centrosome amplification, telomere shortening, genetic instability, apoptosis, and embryonic lethality. Cell Death and Differentiation, 14, 924–931. https://doi.org/10.1038/sj.cdd.4402105.
Sarkar, J., Wan, B., Yin, J., Vallabhaneni, H., Horvath, K., Kulikowicz, T., Bohr, Va, Zhang, Y., Lei, M., & Liu, Y. (2015). SLX4 contributes to telomere preservation and regulated processing of telomeric joint molecule intermediates. Nucleic Acids Research, 43, 5912–5923. https://doi.org/10.1093/nar/gkv522.
Wan, B., Yin, J., Horvath, K., Sarkar, J., Chen, Y., Wu, J., Wan, K., Lu, J., Gu, P., Yu, E., Lue, N., Chang, S., Liu, Y., & Lei, M. (2013). SLX4 assembles a telomere maintenance toolkit by bridging multiple endonucleases with telomeres. Cell Reports, 4, 861–869. https://doi.org/10.1016/j.celrep.2013.08.017.
Salvati, E., Leonetti, C., Rizzo, A., Scarsella, M., Mottolese, M., Galati, R., Sperduti, I., Stevens, M. F. G., D’Incalci, M., Blasco, M., Chiorino, G., Bauwens, S., Horard, B., Gilson, E., Stoppacciaro, A., Zupi, G., & Biroccio, A. (2007). Telomere damage induced by the G-quadruplex ligand RHPS4 has an antitumor effect. The Journal of Clinical Investigation, 117, 3236–3247. https://doi.org/10.1172/JCI32461.
Koirala, D., Dhakal, S., Ashbridge, B., Sannohe, Y., Rodriguez, R., Sugiyama, H., Balasubramanian, S., & Mao, H. (2011). A single-molecule platform for investigation of interactions between G-quadruplexes and small-molecule ligands. Nature Chemistry, 3, 782–787. https://doi.org/10.1038/nchem.1126.
Burger, A. M., Dai, F., Schultes, C. M., Reszka, A. P., Moore, M. J., Double, J. A., & Neidle, S. (2005). The G-quadruplex-interactive molecule BRACO-19 inhibits tumor growth, consistent with telomere targeting and interference with telomerase function. Cancer Research, 65, 1489–1496. https://doi.org/10.1158/0008-5472.CAN-04-2910.
Neidle, S., & Parkinson, G. N. (2003). The structure of telomeric DNA. Current Opinion in Structural Biology, 13, 275–283. https://doi.org/10.1016/S0959-440X(03)00072-1.
Azzalin, C. M., Reichenbach, P., Khoriauli, L., Giulotto, E., & Lingner, J. (2007). Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science, 318, 798–801. https://doi.org/10.1126/science.1147182.
Xu, Y., Kimura, T., & Komiyama, M. (2004). Human telomere RNA and DNA form an intermolecular G-quadruplex. Nucleic Acids Symposium Series, 2008, 169–170. https://doi.org/10.1093/nass/nrn086.
Collie, G. W., Haider, S. M., Neidle, S., & Parkinson, G. N. (2010). A crystallographic and modelling study of a human telomeric RNA (TERRA) quadruplex. Nucleic Acids Research, 38, 5569–5580. https://doi.org/10.1093/nar/gkq259.
Collie, G. W., Parkinson, G. N., Neidle, S., Rosu, F., Pauw, E. De, & Gabelica, V. (2010). Electrospray mass spectrometry of telomeric RNA (TERRA) reveals the formation of stable multimeric G-quadruplex structures. Journal of the American Chemical Society, 132, 9328–9334. https://doi.org/10.1021/ja100345z.
Azzalin, C. M., & Lingner, J. (2014). Telomeres: the silence is broken. Cell Cycle, 7, 1161–1165. https://doi.org/10.4161/cc.7.9.5836.
Feuerhahn, S., Iglesias, N., Panza, A., Porro, A., & Lingner, J. (2010). TERRA biogenesis, turnover and implications for function. FEBS Letters, 584, 3812–3818. https://doi.org/10.1016/j.febslet.2010.07.032.
Nergadze, S. G., Farnung, B. O., Wischnewski, H., Khoriauli, L., Vitelli, V., Chawla, R., Giulotto, E., & Azzalin, C. M. (2009). CpG-island promoters drive transcription of human telomeres. RNA, 15, 2186–2194. https://doi.org/10.1261/rna.1748309.
Ng, L. J., Cropley, J. E., Pickett, H. A., Reddel, R. R., & Suter, C. M. (2009). Telomerase activity is associated with an increase in DNA methylation at the proximal subtelomere and a reduction in telomeric transcription. Nucleic Acids Research, 37, 1152–1159. https://doi.org/10.1093/nar/gkn1030.
Deng, Z., Norseen, J., Wiedmer, A., Riethman, H., Lieberman, P. M. (2009). TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres. Molecular Cell, 35, 403–413. https://doi.org/10.1016/j.molcel.2009.06.025.
Porro, A., Feuerhahn, S., Delafontaine, J., Riethman, H., Rougemont, J., & Lingner, J. (2014). Functional characterization of the TERRA transcriptome at damaged telomeres. Nature Communications, 5, 5379. https://doi.org/10.1038/ncomms6379.
Roy, S., Sadhukhan, R., Ghosh, U., & Das, T. K. (2015). Interaction studies between biosynthesized silver nanoparticle with calf thymus DNA and cytotoxicity of silver nanoparticles. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 141, 176–184. https://doi.org/10.1016/j.saa.2015.01.041.
Wilson, J. J., Tejera, A., Castor, D., Toth, R., Blasco, M., & Rouse, J. (2013). Localization-dependent and -independent roles of SLX4 in regulating telomeres. Cell Reports, 4, 853–860. https://doi.org/10.1016/j.celrep.2013.07.033.
Ghorai, A., Sarma, A., Bhattacharyya, N. P., & Ghosh, U. (2015). Carbon ion beam triggers both caspase-dependent and caspase-independent pathway of apoptosis in HeLa and status of PARP-1 controls intensity of apoptosis. Apoptosis, 20, 562–580. https://doi.org/10.1007/s10495-015-1107-3.
Martínez, P., Thanasoula, M., Muñoz, P., Liao, C., Tejera, A., McNees, C., Flores, J. M., Fernández-Capetillo, O., Tarsounas, M., & Blasco, M. A. (2009). Increased telomere fragility and fusions resulting from TRF1 deficiency lead to degenerative pathologies and increased cancer in mice. Genes & Development, 23, 2060–2075. https://doi.org/10.1101/gad.543509.
Takai, H., Smogorzewska, A., & de Lange, T. (2003). DNA damage foci at dysfunctional telomeres. Current Biology, 13, 1549–1556. https://doi.org/10.1016/S0960-9822(03)00542-6.
Celli, G. B., & de Lange, T. (2005). DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nature Cell Biology, 7, 712–718. https://doi.org/10.1038/ncb1275.
Cesare, A. J., & Reddel, R. R. (2008). Telomere uncapping and alternative lengthening of telomeres. Mechanisms of Ageing and Development, 129, 99–108. https://doi.org/10.1016/j.mad.2007.11.006.
Augereau, A., de Roodenbeke, C. T. ’kint, Simonet, T., Bauwens, S., Horard, B., Callanan, M., Leroux, D., Jallades, L., Salles, G., Gilson, E., & Poncet, D. (2011). Telomeric damage in early stage of chronic lymphocytic leukemia correlates with shelterin dysregulation. Blood, 118, 1316–1322. https://doi.org/10.1182/blood-2010-07-295774.
Ha, H. C., Hester, L. D., & Snyder, S. H. (2002). Poly(ADP-ribose) polymerase-1 dependence of stress-induced transcription factors and associated gene expression in glia. Proceedings of the National Academy of Sciences, 99, 3270–3275. https://doi.org/10.1073/pnas.052712399.
Neidle, S. (2010). Human telomeric G-quadruplex: the current status of telomeric G-quadruplexes as therapeutic targets in human cancer. The FEBS Journal, 277, 1118–1125. https://doi.org/10.1111/j.1742-4658.2009.07463.x.
Riou, J. F., Guittat, L., Mailliet, P., Laoui, A., Renou, E., Petitgenet, O., Mégnin-Chanet, F., Hélène, C., & Mergny, J. L. (2002). Cell senescence and telomere shortening induced by a new series of specific G-quadruplex DNA ligands. Proceedings of the National Academy of Sciences, 99, 2672–2677. https://doi.org/10.1073/pnas.052698099.
Siddiqui-Jain, A., Grand, C. L., Bearss, D. J., & Hurley, L. H. (2002). Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proceedings of the National Academy of Sciences, 99, 11593–11598. https://doi.org/10.1073/pnas.182256799.
Dai, J., Dexheimer, T. S., Chen, D., Carver, M., Ambrus, A., Jones, R. A., & Yang, D. (2006). An intramolecular G-quadruplex structure with mixed parallel/antiparallel G-strands formed in the human BCL-2 promoter region in solution. Journal of the American Chemical Society, 128, 1096–1098. https://doi.org/10.1021/ja055636a.
Arutyunyan, R., Rapp, A., Greulich, K. O., Hovhannisyan, G., Haroutiunian, S., & Gebhart, E. (2005). Fragility of telomeres after bleomycin and cisplatin combined treatment measured in human leukocytes with the Comet-FISH technique. Experimental Oncology, 27, 38–42. http://europepmc.org/abstract/MED/15812355.
Nguyen, T. V., & Murray, V. (2012). Human telomeric DNA sequences are a major target for the antitumour drug bleomycin. Journal of Biological Inorganic Chemistry, 17, 1–9. https://doi.org/10.1007/s00775-011-0818-3.
Acknowledgements
U.G. is grateful to DBT, New Delhi, India (BT/PR 4809/BRB/10/1028/2012) for providing financial assistance and infrastructural facility. P.C. thanks to ICMR, New Delhi, India, for her fellowship (BMS/FW/CMB/2015-24000/JUN-2016/05/WB/GOVT). S.G. thanks to DBT, New Delhi, India, for his fellowship. R.S. is thankful to University of Kalyani for URS fellowship. U.G. is also grateful to DST, New Delhi, India (SR/SO/BB-0017/2010) for partial financial assistance.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that they have no competing interests.
Additional information
Ratan Sadhukhan and Priyanka Chowdhury contributed equally to this work.
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Sadhukhan, R., Chowdhury, P., Ghosh, S. et al. Expression of Telomere-Associated Proteins is Interdependent to Stabilize Native Telomere Structure and Telomere Dysfunction by G-Quadruplex Ligand Causes TERRA Upregulation. Cell Biochem Biophys 76, 311–319 (2018). https://doi.org/10.1007/s12013-017-0835-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12013-017-0835-0


