Skip to main content
Log in

Expression of Telomere-Associated Proteins is Interdependent to Stabilize Native Telomere Structure and Telomere Dysfunction by G-Quadruplex Ligand Causes TERRA Upregulation

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Telomere DNA can form specialized nucleoprotein structure with telomere-associated proteins to hide free DNA ends or G-quadruplex structures under certain conditions especially in presence of G-quadruplex ligand. Telomere DNA is transcribed to form non-coding telomere repeat-containing RNA (TERRA) whose biogenesis and function is poorly understood. Our aim was to find the role of telomere-associated proteins and telomere structures in TERRA transcription. We silenced four [two shelterin (TRF1, TRF2) and two non-shelterin (PARP-1, SLX4)] telomere-associated genes using siRNA and verified depletion in protein level. Knocking down of one gene modulated expression of other telomere-associated genes and increased TERRA from 10q, 15q, XpYp and XqYq chromosomes in A549 cells. Telomere was destabilized or damaged by G-quadruplex ligand pyridostatin (PDS) and bleomycin. Telomere dysfunction-induced foci (TIFs) were observed for each case of depletion of proteins, treatment with PDS or bleomycin. TERRA level was elevated by PDS and bleomycin treatment alone or in combination with depletion of telomere-associated proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Blackburn, E. H., & Gall, J. G. (1978). A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. Journal of Molecular Biology, 120, 33–53.

    Article  CAS  PubMed  Google Scholar 

  2. Morin, G. B. (1989). The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell, 59, 521–529. https://doi.org/10.1016/0092-8674(89)90035-4.

    Article  CAS  PubMed  Google Scholar 

  3. Greider, C. W. (1999). Telomeres do D-loop–T-loop. Cell, 97, 419–422. https://doi.org/10.1016/S0092-8674(00)80750-3.

    Article  CAS  PubMed  Google Scholar 

  4. Griffith, J. D., Comeau, L., Rosenfield, S., Stansel, R. M., Bianchi, A., Moss, H., & de Lange, T. (1999). Mammalian telomeres end in a large duplex loop. Cell, 97, 503–514. https://doi.org/10.1016/S0092-8674(00)80760-6.

    Article  CAS  PubMed  Google Scholar 

  5. O’Connor, M. S., Safari, A., Liu, D., Qin, J., & Songyang, Z. (2004). The human Rap1 protein complex and modulation of telomere length. The Journal of Biological Chemistry, 279, 28585–28591. https://doi.org/10.1074/jbc.M312913200.

    Article  PubMed  Google Scholar 

  6. O’Connor, M. S., Safari, A., Xin, H., Liu, D., & Songyang, Z. (2006). A critical role for TPP1 and TIN2 interaction in high-order telomeric complex assembly. Proceedings of the National Academy of Sciences, 103, 11874–11879. https://doi.org/10.1073/pnas.0605303103.

    Article  Google Scholar 

  7. Chen, Y., Yang, Y., van Overbeek, M., Donigian, J. R., Baciu, P., de Lange, T., & Lei, M. (2008). A shared docking motif in TRF1 and TRF2 used for differential recruitment of telomeric proteins. Science, 319, 1092–1096. https://doi.org/10.1126/science.1151804.

    Article  CAS  PubMed  Google Scholar 

  8. de Lange, T. (2005). Shelterin: the protein complex that shapes and safeguards human telomeres. Genes & Development, 19, 2100–2110. https://doi.org/10.1101/gad.1346005.

    Article  Google Scholar 

  9. Lange, T. De (2010). How shelterin solves the telomere end-protection problem. Cold Spring Harbor Symposia on Quantitative Biology, 75, 167–177. https://doi.org/10.1101/sqb.2010.75.017.

    Article  PubMed  Google Scholar 

  10. Smogorzewska, A., van Steensel, B., Bianchi, A., Oelmann, S., Schaefer, M. R., Schnapp, G., & de Lange, T. (2000). Control of human telomere length by TRF1 and TRF2. Molecular and Cellular Biology, 20, 1659–1668. https://doi.org/10.1128/MCB.20.5.1659-1668.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sfeir, A., Kosiyatrakul, S. T., Hockemeyer, D., MacRae, S. L., Karlseder, J., Schildkraut, C. L., & de Lange, T. (2009). Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell, 138, 90–103. https://doi.org/10.1016/j.cell.2009.06.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zaug, A. J., Podell, E. R., & Cech, T. R. (2005). Human POT1 disrupts telomeric G-quadruplexes allowing telomerase extension in vitro. Proceedings of the National Academy of Sciences, 102, 10864–10869. https://doi.org/10.1073/pnas.0504744102.

    Article  CAS  Google Scholar 

  13. Hockemeyer, D., Sfeir, A. J., Shay, J. W., Wright, W. E., & de Lange, T. (2005). POT1 protects telomeres from a transient DNA damage response and determines how human chromosomes end. The EMBO Journal, 24, 2667–2678. https://doi.org/10.1038/sj.emboj.7600733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bae, N. S., & Baumann, P. (2007). A RAP1/TRF2 complex inhibits nonhomologous end-joining at human telomeric DNA ends. Molecular Cell, 26, 323–334. https://doi.org/10.1016/j.molcel.2007.03.023.

    Article  CAS  PubMed  Google Scholar 

  15. Stansel, R. M., de Lange, T., & Griffith, J. D. (2001). T-loop assembly in vitro involves binding of TRF2 near the 3’ telomeric overhang. The EMBO Journal, 20, 5532–5540. https://doi.org/10.1093/emboj/20.19.5532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ye, J. Z.-S., Donigian, J. R., van Overbeek, M., Loayza, D., Luo, Y., Krutchinsky, A. N., Chait, B. T., & de Lange, T. (2004). TIN2 binds TRF1 and TRF2 simultaneously and stabilizes the TRF2 complex on telomeres. The Journal of Biological Chemistry, 279, 47264–47271. https://doi.org/10.1074/jbc.M409047200.

    Article  CAS  PubMed  Google Scholar 

  17. Abreu, E., Aritonovska, E., Reichenbach, P., Cristofari, G., Culp, B., Terns, R. M., Lingner, J., & Terns, M. P. (2010). TIN2-tethered TPP1 recruits human telomerase to telomeres in vivo. Molecular and Cellular Biology, 30, 2971–2982. https://doi.org/10.1128/MCB.00240-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Takai, K. K., Kibe, T., Donigian, J. R., Frescas, D., & de Lange, T. (2011). Telomere protection by TPP1/POT1 requires tethering to TIN2. Molecular Cell, 44, 647–659. https://doi.org/10.1016/j.molcel.2011.08.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gomez, M., Wu, J., Schreiber, V., Dunlap, J., Dantzer, F., Wang, Y., & Liu, Y. (2006). PARP1 Is a TRF2-associated poly(ADP-ribose)polymerase and protects eroded telomeres. Molecular Biology of the Cell, 17, 1686–1696. https://doi.org/10.1091/mbc.E05-07-0672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Beneke, S., Cohausz, O., Malanga, M., Boukamp, P., Althaus, F., & Bürkle, A. (2008). Rapid regulation of telomere length is mediated by poly(ADP-ribose) polymerase-1. Nucleic Acids Research, 36, 6309–6317. https://doi.org/10.1093/nar/gkn615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, X., Liu, L., Montagna, C., Ried, T., & Deng, C.-X. (2007). Haploinsufficiency of Parp1 accelerates Brca1-associated centrosome amplification, telomere shortening, genetic instability, apoptosis, and embryonic lethality. Cell Death and Differentiation, 14, 924–931. https://doi.org/10.1038/sj.cdd.4402105.

    Article  CAS  PubMed  Google Scholar 

  22. Sarkar, J., Wan, B., Yin, J., Vallabhaneni, H., Horvath, K., Kulikowicz, T., Bohr, Va, Zhang, Y., Lei, M., & Liu, Y. (2015). SLX4 contributes to telomere preservation and regulated processing of telomeric joint molecule intermediates. Nucleic Acids Research, 43, 5912–5923. https://doi.org/10.1093/nar/gkv522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wan, B., Yin, J., Horvath, K., Sarkar, J., Chen, Y., Wu, J., Wan, K., Lu, J., Gu, P., Yu, E., Lue, N., Chang, S., Liu, Y., & Lei, M. (2013). SLX4 assembles a telomere maintenance toolkit by bridging multiple endonucleases with telomeres. Cell Reports, 4, 861–869. https://doi.org/10.1016/j.celrep.2013.08.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Salvati, E., Leonetti, C., Rizzo, A., Scarsella, M., Mottolese, M., Galati, R., Sperduti, I., Stevens, M. F. G., D’Incalci, M., Blasco, M., Chiorino, G., Bauwens, S., Horard, B., Gilson, E., Stoppacciaro, A., Zupi, G., & Biroccio, A. (2007). Telomere damage induced by the G-quadruplex ligand RHPS4 has an antitumor effect. The Journal of Clinical Investigation, 117, 3236–3247. https://doi.org/10.1172/JCI32461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Koirala, D., Dhakal, S., Ashbridge, B., Sannohe, Y., Rodriguez, R., Sugiyama, H., Balasubramanian, S., & Mao, H. (2011). A single-molecule platform for investigation of interactions between G-quadruplexes and small-molecule ligands. Nature Chemistry, 3, 782–787. https://doi.org/10.1038/nchem.1126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Burger, A. M., Dai, F., Schultes, C. M., Reszka, A. P., Moore, M. J., Double, J. A., & Neidle, S. (2005). The G-quadruplex-interactive molecule BRACO-19 inhibits tumor growth, consistent with telomere targeting and interference with telomerase function. Cancer Research, 65, 1489–1496. https://doi.org/10.1158/0008-5472.CAN-04-2910.

    Article  CAS  PubMed  Google Scholar 

  27. Neidle, S., & Parkinson, G. N. (2003). The structure of telomeric DNA. Current Opinion in Structural Biology, 13, 275–283. https://doi.org/10.1016/S0959-440X(03)00072-1.

    Article  CAS  PubMed  Google Scholar 

  28. Azzalin, C. M., Reichenbach, P., Khoriauli, L., Giulotto, E., & Lingner, J. (2007). Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science, 318, 798–801. https://doi.org/10.1126/science.1147182.

    Article  CAS  PubMed  Google Scholar 

  29. Xu, Y., Kimura, T., & Komiyama, M. (2004). Human telomere RNA and DNA form an intermolecular G-quadruplex. Nucleic Acids Symposium Series, 2008, 169–170. https://doi.org/10.1093/nass/nrn086.

    Google Scholar 

  30. Collie, G. W., Haider, S. M., Neidle, S., & Parkinson, G. N. (2010). A crystallographic and modelling study of a human telomeric RNA (TERRA) quadruplex. Nucleic Acids Research, 38, 5569–5580. https://doi.org/10.1093/nar/gkq259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Collie, G. W., Parkinson, G. N., Neidle, S., Rosu, F., Pauw, E. De, & Gabelica, V. (2010). Electrospray mass spectrometry of telomeric RNA (TERRA) reveals the formation of stable multimeric G-quadruplex structures. Journal of the American Chemical Society, 132, 9328–9334. https://doi.org/10.1021/ja100345z.

    Article  CAS  PubMed  Google Scholar 

  32. Azzalin, C. M., & Lingner, J. (2014). Telomeres: the silence is broken. Cell Cycle, 7, 1161–1165. https://doi.org/10.4161/cc.7.9.5836.

    Article  Google Scholar 

  33. Feuerhahn, S., Iglesias, N., Panza, A., Porro, A., & Lingner, J. (2010). TERRA biogenesis, turnover and implications for function. FEBS Letters, 584, 3812–3818. https://doi.org/10.1016/j.febslet.2010.07.032.

    Article  CAS  PubMed  Google Scholar 

  34. Nergadze, S. G., Farnung, B. O., Wischnewski, H., Khoriauli, L., Vitelli, V., Chawla, R., Giulotto, E., & Azzalin, C. M. (2009). CpG-island promoters drive transcription of human telomeres. RNA, 15, 2186–2194. https://doi.org/10.1261/rna.1748309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ng, L. J., Cropley, J. E., Pickett, H. A., Reddel, R. R., & Suter, C. M. (2009). Telomerase activity is associated with an increase in DNA methylation at the proximal subtelomere and a reduction in telomeric transcription. Nucleic Acids Research, 37, 1152–1159. https://doi.org/10.1093/nar/gkn1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Deng, Z., Norseen, J., Wiedmer, A., Riethman, H., Lieberman, P. M. (2009). TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres. Molecular Cell, 35, 403–413. https://doi.org/10.1016/j.molcel.2009.06.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Porro, A., Feuerhahn, S., Delafontaine, J., Riethman, H., Rougemont, J., & Lingner, J. (2014). Functional characterization of the TERRA transcriptome at damaged telomeres. Nature Communications, 5, 5379. https://doi.org/10.1038/ncomms6379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Roy, S., Sadhukhan, R., Ghosh, U., & Das, T. K. (2015). Interaction studies between biosynthesized silver nanoparticle with calf thymus DNA and cytotoxicity of silver nanoparticles. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 141, 176–184. https://doi.org/10.1016/j.saa.2015.01.041.

    Article  CAS  Google Scholar 

  39. Wilson, J. J., Tejera, A., Castor, D., Toth, R., Blasco, M., & Rouse, J. (2013). Localization-dependent and -independent roles of SLX4 in regulating telomeres. Cell Reports, 4, 853–860. https://doi.org/10.1016/j.celrep.2013.07.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ghorai, A., Sarma, A., Bhattacharyya, N. P., & Ghosh, U. (2015). Carbon ion beam triggers both caspase-dependent and caspase-independent pathway of apoptosis in HeLa and status of PARP-1 controls intensity of apoptosis. Apoptosis, 20, 562–580. https://doi.org/10.1007/s10495-015-1107-3.

    Article  CAS  PubMed  Google Scholar 

  41. Martínez, P., Thanasoula, M., Muñoz, P., Liao, C., Tejera, A., McNees, C., Flores, J. M., Fernández-Capetillo, O., Tarsounas, M., & Blasco, M. A. (2009). Increased telomere fragility and fusions resulting from TRF1 deficiency lead to degenerative pathologies and increased cancer in mice. Genes & Development, 23, 2060–2075. https://doi.org/10.1101/gad.543509.

    Article  Google Scholar 

  42. Takai, H., Smogorzewska, A., & de Lange, T. (2003). DNA damage foci at dysfunctional telomeres. Current Biology, 13, 1549–1556. https://doi.org/10.1016/S0960-9822(03)00542-6.

    Article  CAS  PubMed  Google Scholar 

  43. Celli, G. B., & de Lange, T. (2005). DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nature Cell Biology, 7, 712–718. https://doi.org/10.1038/ncb1275.

    Article  CAS  PubMed  Google Scholar 

  44. Cesare, A. J., & Reddel, R. R. (2008). Telomere uncapping and alternative lengthening of telomeres. Mechanisms of Ageing and Development, 129, 99–108. https://doi.org/10.1016/j.mad.2007.11.006.

    Article  CAS  PubMed  Google Scholar 

  45. Augereau, A., de Roodenbeke, C. T. ’kint, Simonet, T., Bauwens, S., Horard, B., Callanan, M., Leroux, D., Jallades, L., Salles, G., Gilson, E., & Poncet, D. (2011). Telomeric damage in early stage of chronic lymphocytic leukemia correlates with shelterin dysregulation. Blood, 118, 1316–1322. https://doi.org/10.1182/blood-2010-07-295774.

    Article  CAS  PubMed  Google Scholar 

  46. Ha, H. C., Hester, L. D., & Snyder, S. H. (2002). Poly(ADP-ribose) polymerase-1 dependence of stress-induced transcription factors and associated gene expression in glia. Proceedings of the National Academy of Sciences, 99, 3270–3275. https://doi.org/10.1073/pnas.052712399.

    Article  CAS  Google Scholar 

  47. Neidle, S. (2010). Human telomeric G-quadruplex: the current status of telomeric G-quadruplexes as therapeutic targets in human cancer. The FEBS Journal, 277, 1118–1125. https://doi.org/10.1111/j.1742-4658.2009.07463.x.

    Article  CAS  PubMed  Google Scholar 

  48. Riou, J. F., Guittat, L., Mailliet, P., Laoui, A., Renou, E., Petitgenet, O., Mégnin-Chanet, F., Hélène, C., & Mergny, J. L. (2002). Cell senescence and telomere shortening induced by a new series of specific G-quadruplex DNA ligands. Proceedings of the National Academy of Sciences, 99, 2672–2677. https://doi.org/10.1073/pnas.052698099.

    Article  CAS  Google Scholar 

  49. Siddiqui-Jain, A., Grand, C. L., Bearss, D. J., & Hurley, L. H. (2002). Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proceedings of the National Academy of Sciences, 99, 11593–11598. https://doi.org/10.1073/pnas.182256799.

    Article  CAS  Google Scholar 

  50. Dai, J., Dexheimer, T. S., Chen, D., Carver, M., Ambrus, A., Jones, R. A., & Yang, D. (2006). An intramolecular G-quadruplex structure with mixed parallel/antiparallel G-strands formed in the human BCL-2 promoter region in solution. Journal of the American Chemical Society, 128, 1096–1098. https://doi.org/10.1021/ja055636a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Arutyunyan, R., Rapp, A., Greulich, K. O., Hovhannisyan, G., Haroutiunian, S., & Gebhart, E. (2005). Fragility of telomeres after bleomycin and cisplatin combined treatment measured in human leukocytes with the Comet-FISH technique. Experimental Oncology, 27, 38–42. http://europepmc.org/abstract/MED/15812355.

    CAS  PubMed  Google Scholar 

  52. Nguyen, T. V., & Murray, V. (2012). Human telomeric DNA sequences are a major target for the antitumour drug bleomycin. Journal of Biological Inorganic Chemistry, 17, 1–9. https://doi.org/10.1007/s00775-011-0818-3.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

U.G. is grateful to DBT, New Delhi, India (BT/PR 4809/BRB/10/1028/2012) for providing financial assistance and infrastructural facility. P.C. thanks to ICMR, New Delhi, India, for her fellowship (BMS/FW/CMB/2015-24000/JUN-2016/05/WB/GOVT). S.G. thanks to DBT, New Delhi, India, for his fellowship. R.S. is thankful to University of Kalyani for URS fellowship. U.G. is also grateful to DST, New Delhi, India (SR/SO/BB-0017/2010) for partial financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utpal Ghosh.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Ratan Sadhukhan and Priyanka Chowdhury contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadhukhan, R., Chowdhury, P., Ghosh, S. et al. Expression of Telomere-Associated Proteins is Interdependent to Stabilize Native Telomere Structure and Telomere Dysfunction by G-Quadruplex Ligand Causes TERRA Upregulation. Cell Biochem Biophys 76, 311–319 (2018). https://doi.org/10.1007/s12013-017-0835-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-017-0835-0

Keywords

Navigation