A Contact-Based Method for Differentiation of Human Mesenchymal Stem Cells into an Endothelial Cell-Phenotype

Abstract

Adult stem cells such as mesenchymal stem cells (MSC) are known to possess the ability to augment neovascularization processes and are thus widely popular as an autologous source of progenitor cells. However there is a huge gap in our current knowledge of mechanisms involved in differentiating MSC into endothelial cells (EC), essential for lining engineered blood vessels. To fill up this gap, we attempted to differentiate human MSC into EC, by culturing the former onto chemically fixed layers of EC or its ECM, respectively. We expected direct contact of MSC when cultured atop fixed EC or its ECM, would coax the former to differentiate into EC. Results showed that human MSC cultured atop chemically fixed EC or its ECM using EC-medium showed enhanced expression of CD31, a marker for EC, compared to other cases. Further in all human MSC cultured using EC-medium, typically characteristic cobble stone shaped morphologies were noted in comparison to cells cultured using MSC medium, implying that the differentiated cells were sensitive to soluble VEGF supplementation present in the EC-medium. Results will enhance and affect therapies utilizing autologous MSC as a cell source for generating vascular cells to be used in a variety of tissue engineering applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Rytlewski, J. A., Alejandra Aldon, M., Lewis, E. W., & Suggs, L. J. (2015). Mechanisms of tubulogenesis and endothelial phenotype expression by MSCs. Microvascular Research, 99, 26–35.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Rytlewski, J. A., Geuss, L. R., Anyaeji, C. I., Lewis, E. W., & Suggs, L. J. (2012). Three-dimensional image quantification as a new morphometry method for tissue engineering. Tissue Engineering Part C, 18(7), 507–516.

    Article  Google Scholar 

  3. 3.

    Ball, S. G., Shuttleworth, A. C., & Kielty, C. M. (2004). Direct cell contact influences bone marrow mesenchymal stem cell fate. The International Journal of Biochemistry & Cell Biology, 36(4), 714–727.

    CAS  Article  Google Scholar 

  4. 4.

    Lozito, T. P., Kuo, C. K., Taboas, J. M., & Tuan, R. S. (2009). Human mesenchymal stem cells express vascular cell phenotypes upon interaction with endothelial cell matrix. Journal of Cellular Biochemistry, 107(4), 714–722.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Joddar, B., Nishioka, C., Takahashi, E., & Ito, Y. (2015). Chemically fixed autologous feeder cell-derived niche for human induced pluripotent stem cell culture. Journal of Materials Chemistry B, 3(11), 2301–2307.

    CAS  Article  Google Scholar 

  6. 6.

    Zhou, Y., Mao, H., Joddar, B., Umeki, N., Sako, Y., Wada, K.-I., Nishioka, C., Takahashi, E., Wang, Y., & Ito, Y. (2015). The significance of membrane fluidity of feeder cell-derived substrates for maintenance of iPS cell stemness. Scientific Reports, 5, 11386.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Hoshiba, T., Kawazoe, N., Tateishi, T., & Chen, G. (2009). Development of stepwise osteogenesis-mimicking matrices for the regulation of mesenchymal stem cell functions. Journal of Biological Chemistry, 284(45), 31164–31173.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Hoshiba, T., Lu, H., Kawazoe, N., & Chen, G. (2010). Decellularized matrices for tissue engineering. Expert Opinion on Biological Therapy, 10(12), 1717–1728.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Zantop, T., Gilbert, T. W., Yoder, M. C., & Badylak, S. F. (2006). Extracellular matrix scaffolds are repopulated by bone marrow‐derived cells in a mouse model of Achilles tendon reconstruction. Journal of Orthopedic Research, 24(6), 1299–1309.

    Article  Google Scholar 

  10. 10.

    Badylak, S. F., Freytes, D. O., & Gilbert, T. W. (2009). Extracellular matrix as a biological scaffold material: structure and function. Acta Biomaterialia, 5(1), 1–13.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Badylak, S., Kokini, K., Tullius, B., & Whitson, B. (2001). Strength over time of a resorbable bioscaffold for body wall repair in a dog model. Journal of Surgical Research, 99(2), 282–287.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Ringel, R. L., Kahane, J. C., Hillsamer, P. J., Lee, A. S., & Badylak, S. F. (2006). The application of tissue engineering procedures to repair the larynx. Journal of Speech, Language, and Hearing Research, 49(1), 194–208.

    Article  PubMed  Google Scholar 

  13. 13.

    Bertone, A. L., Goin, S., Kamei, S. J., Mattoon, J. S., Litsky, A. S., Weisbrode, S. E., Clarke, R. B., Plouhar, P. L., & Kaeding, C. C. (2008). Metacarpophalangeal collateral ligament reconstruction using small intestinal submucosa in an equine model. Journal of Biomedical Materials Research, 84(1), 219–229.

    Article  PubMed  Google Scholar 

  14. 14.

    Gilbert, T. W., Stewart-Akers, A. M., Simmons-Byrd, A., & Badylak, S. F. (2007). Degradation and remodeling of small intestinal submucosa in canine Achilles tendon repair. JBJS, 89(3), 621–630.

    Article  Google Scholar 

  15. 15.

    Huber, J. E., Spievack, A., Ringel, R. L., Simmons-Byrd, A., & Badylak, S. (2003). Extracellular matrix as a scaffold for laryngeal reconstruction. Annals of Otology, Rhinology & Laryngology, 112(5), 428–433.

    Article  Google Scholar 

  16. 16.

    Joddar, B., Hoshiba, T., Chen, G., & Ito, Y. (2014). Stem cell culture using cell-derived substrates. Biomaterials Science, 2(11), 1595–1603.

    CAS  Article  Google Scholar 

  17. 17.

    Joddar, B., & Ito, Y. (2011). Biological modifications of materials surfaces with proteins for regenerative medicine. Journal of Materials Chemistry, 21(36), 13737–13755.

    CAS  Article  Google Scholar 

  18. 18.

    Joddar, B., & Ito, Y. (2013). Artificial niche substrates for embryonic and induced pluripotent stem cell cultures. Journal of Biotechnology, 168(2), 218–228.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Swerlick, R. A., Lee, K., Wick, T., & Lawley, T. (1992). Human dermal microvascular endothelial but not human umbilical vein endothelial cells express CD36 in vivo and in vitro. The Journal of Immunology, 148(1), 78–83.

    CAS  PubMed  Google Scholar 

  20. 20.

    Sauter, B., Foedinger, D., Sterniczky, B., Wolff, K., & Rappersberger, K. (1998). Immunoelectron microscopic characterization of human dermal lymphatic microvascular endothelial cells: differential expression of CD31, CD34, and type IV collagen with lymphatic endothelial cells vs blood capillary endothelial cells in normal human skin, lymphangioma, and hemangioma in situ. Journal of Histochemistry & Cytochemistry, 46(2), 165–176.

    CAS  Article  Google Scholar 

  21. 21.

    Ito, Y. (2008). Covalently immobilized biosignal molecule materials for tissue engineering. Soft Matter, 4(1), 46–56.

    CAS  Article  Google Scholar 

  22. 22.

    Wang, T., Xu, Z., Jiang, W., & Ma, A. (2006). Cell-to-cell contact induces mesenchymal stem cell to differentiate into cardiomyocyte and smooth muscle cell. International Journal of Cardiology, 109(1), 74–81.

    Article  PubMed  Google Scholar 

  23. 23.

    Saleh, F., Whyte, M., & Genever, P. (2011). Effects of endothelial cells on human mesenchymal stem cell activity in a three-dimensional in vitro model. European Cells & Materials, 22(242), e57.

    Google Scholar 

  24. 24.

    Menge, T., Gerber, M., Wataha, K., Reid, W., Guha, S., Cox, Jr, C. S., Dash, P., Reitz, Jr, M. S., Khakoo, A. Y., & Pati, S. (2012). Human mesenchymal stem cells inhibit endothelial proliferation and angiogenesis via cell–cell contact through modulation of the VE-cadherin/β-catenin signaling pathway. Stem Cells and Development, 22(1), 148–157.

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Villaschi, S., & Nicosia, R. F. (1994). Paracrine interactions between fibroblasts and endothelial cells in a serum-free coculture model. Modulation of angiogenesis and collagen gel contraction. Laboratory Investigation, 71(2), 291–299.

    CAS  PubMed  Google Scholar 

  26. 26.

    Blancas, A. A., Lauer, N. E., & McCloskey, K. E. (2008). Endothelial differentiation of embryonic stem cells. Current Protocols in Stem Cell Biology, 1F, 5.1–5.1.9.

    Google Scholar 

  27. 27.

    Joddar, B., Guy, A. T., Kamiguchi, H., & Ito, Y. (2013). Spatial gradients of chemotropic factors from immobilized patterns to guide axonal growth and regeneration. Biomaterials, 34(37), 9593–9601.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Joddar, B., Kitajima, T., & Ito, Y. (2011). The effects of covalently immobilized hyaluronic acid substrates on the adhesion, expansion, and differentiation of embryonic stem cells for in vitro tissue engineering. Biomaterials, 32(33), 8404–8415.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

B.J acknowledges the mentoring and technical support received for this work from Dr. Laura Suggs (NIH BUILD Super mentor) at UT Austin. B.J acknowledges NIH BUILD Pilot fund 8UL1GM118970-02 and NIH 1SC2HL134642-01 for funding support. The authors acknowledge the use of the Core Facility at Border Biomedical Research Consortium at UTEP supported by NIH-NIMHD-RCMI Grant No. 2G12MD007592 and help from Dr. Armando Varela. The authors also acknowledge technical assistance received from Swadipta Roy.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Binata Joddar.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Joddar, B., Kumar, S.A. & Kumar, A. A Contact-Based Method for Differentiation of Human Mesenchymal Stem Cells into an Endothelial Cell-Phenotype. Cell Biochem Biophys 76, 187–195 (2018). https://doi.org/10.1007/s12013-017-0828-z

Download citation

Keywords

  • Direct cell–cell contact
  • Stem cell
  • Differentiated cell
  • Chemically fixed substrate
  • Decellularization