Cell Biochemistry and Biophysics

, Volume 76, Issue 1–2, pp 59–71 | Cite as

Identification of Structure-Stabilizing Interactions in Enzymes: A Novel Mechanism to Impact Enzyme Activity

  • Marisol Serrano
  • Veronica Gonzalez
  • Supriyo Ray
  • Maria D. Chavez
  • Mahesh NarayanEmail author
Original Paper


Cruzain, a cysteine protease in the cathepsin family, is pivotal to the life-cycle of Trypanosoma cruzi, the etiological agent in Chagas disease. Current inhibitors of cruzain suffer from drawbacks involving gastrointestinal and neurological side effects and as a result have spurred the search for alternative anti-trypanocidals. Through sequence alignment studies and intra-residue interaction analysis of the pro-protein of cruzain (pro-cruzain), we have identified a host of non-active site residues that are conserved among the cathepsins. We hypothesize that these conserved amino acids play a critical role in structure-stabilizing interactions among the cathepsins and are therefore crucial for eventually gaining protease activity. As predicted, mutation of selected conserved non-active site amino-acid candidates in cruzain resulted in a compromised structural stability and a corresponding loss in enzymatic activity relative to wild-type enzyme. By advancing the discovery of novel, non-active-site-based targets to arrest enzymatic activity our results potentially open the field of alternative inhibitor design. The advantages of defining such a non-active-site inhibitor design space is discussed.


Pro-cruzain Cysteine protease Expression Chagas disease Trypanosoma cruzi Circular dichroism Auto-activation 



MN would like to thank the American Heart Association (National Scientist Development Grant) for the financial support. The authors acknowledge the Border Biomedical Research Center (BBRC) and the staff of the DNA Core Facility at the University of Texas at El Paso for services and facilities provided and the RISE Program. Some of this work was made possible due to support from NIGMS/NIH RL5GM118969, TL4GM118971, UL1GM118970. Denise Chavez and Research reported in this publication was supported in part by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R25GM060424. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

12013_2017_816_MOESM1_ESM.docx (47 kb)
Supplementary Figures


  1. 1.
    Lewinsohn, R. (1981). Carlos Chagas and the discovery of Chagas’ disease (American trypanosomiasis). Journal of the Royal Society of Medicine, 74(6), 451–455.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    W. H. O. (2015). Chagas disease in Latin America: An epidemiological update based on 2010 estimates. Weekly Epidemiological Record90(6), 33–44.Google Scholar
  3. 3.
    Who, F. (2010). Working to overcome the global impact of neglected tropical diseases First WHO report on neglected tropical diseases. World Health, 86(13), 1–184.Google Scholar
  4. 4.
    Bonney, K. M., & Engman, D. M. (2008). Chagas heart disease pathogenesis: One mechanism or many? Current Molecular Medicine, 8(6), 510–518.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rassi, A., & Marin-Neto, J. A. (2010). Chagas disease. Lancet, 375(9723), 1388–1402.CrossRefPubMedGoogle Scholar
  6. 6.
    Tanowitz, H. B., Kirchhoff, L. V., Simon, D., Morris, S. A., Weiss, L. M., & Wittner, M. (1968). Chagas’ disease. Proceedings of the Royal Society of Medicine, 5(5), 444–445.Google Scholar
  7. 7.
    Cazzulo, J. J., Stoka, V., & Turk, V. (2001). The major cysteine proteinase of Trypanosoma cruzi: A valid target for chemotherapy of Chagas’ disease. Current Pharmaceutical Design, 7, 1143–1156.CrossRefGoogle Scholar
  8. 8.
    McKerrow, J. H., Engel, J. C., & Caffrey, C. R. (1999). Cysteine protease inhibitors as chemotherapy for parasitic infections. Bioorganic & Medicinal Chemistry, 7(4), 639–644.CrossRefGoogle Scholar
  9. 9.
    McKerrow, J. H., McGrath, M. E., & Engel, J. C. (1995). The cysteine protease of Trypanosoma cruzi as a model for antiparasite drug design. Parasitology Today, 11(8), 279–282.CrossRefPubMedGoogle Scholar
  10. 10.
    Sajid, M., & McKerrow, J. H. (2002). Cysteine proteases of parasitic organisms. Molecular and Biochemical Parasitology, 120(1), 1–21.CrossRefPubMedGoogle Scholar
  11. 11.
    Lima, L., Ortiz, P. A., Silva, F. M., Joao Marcelo, P., Alves, M. G. S., Alane, P., Cortez, S. C. A., Buck, G. A., & Teixeira, M. M. G. (2012). Repertoire, genealogy and genomic organization of cruzipain and homologous genes in trypanosoma cruzi, T. Cruzi-Like and Other Trypanosome Species. PLoS One, 7(6), 1–15.Google Scholar
  12. 12.
    Rangel, H. A., Araújo, P. M., Repka, D., & Costa, M. G. (1981). Trypanosoma cruzi: isolation and characterization of a proteinase. Experimental Parasitology, 52(2), 199–209.CrossRefPubMedGoogle Scholar
  13. 13.
    Eakin, A. E., Mills, A., Harth, G., Mckerrowo, J. H., & Craiks, C. S. (1992). The sequence, organization, and expression of the major cysteine protease (cruzain) from trypanosoma cruzi. The Journal of Biological Chemistry, 267(1990), 7411–7420.PubMedGoogle Scholar
  14. 14.
    Ishidoh, K., & Kominami, E. (2002). Processing and activation of lysosomal proteinases. Biological Chemistry, 383(12), 1827–1831.CrossRefPubMedGoogle Scholar
  15. 15.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410.CrossRefPubMedGoogle Scholar
  16. 16.
    Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., & Notredame, C. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7(1), 539.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Roy, A., Kucukural, A., & Zhang, Y. (2010). I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols, 5(4), 725–738.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Tina, K. G., B., R., & S., N. (2007). Protein Interactions Calculator. Nucleic Acids Research, 35, W473–W476.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Doyle, P. S., Zhou, Y. M., Engel, J. C., & McKerrow, J. H. (2007). A cysteine protease inhibitor cures Chagas’ disease in an immunodeficient-mouse model of infection. Antimicrobial Agents and Chemotherapy, 51(11), 3932–3939.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    PyMOL Molecular Graphics System. Version 1.8. Schrödinger, LLC.Google Scholar
  21. 21.
    Sivashanmugam, A., Murray, V., Cui, C., Zhang, Y., Wang, J., & Li, Q. (2009). Practical protocols for production of very high yields of recombinant proteins using Escherichia coli. Protein Science, 18(1), 936–948.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Coulombe, R., Grochulski, P., Sivaraman, J., Ménard, R., Mort, J. S., & Cygler, M. (1996). Structure of human procathepsin L reveals the molecular basis of inhibition by the prosegment. The EMBO Journal, 15(20), 5492–5503.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Reis, F. C. G., Costa, T. F. R., Sulea, T., Mezzetti, A., Scharfstein, J., Brömme, D., & Lima, A. P. C. (2007). The propeptide of cruzipain-a potent selective inhibitor of the trypanosomal enzymes cruzipain and brucipain, and of the human enzyme cathepsin F. The FEBS Journal, 274(5), 1224–1234.CrossRefPubMedGoogle Scholar
  24. 24.
    Eder, J., Rheinnecker, M., & Fersht, R. (1993). Folding of subtilisin BPN’: Role of the pro-sequence. Journal of Molecular Biology, 32(1), 18–26.Google Scholar
  25. 25.
    Lerner, C. G., Kobayashi, T., & Inouye, M. (1990). Isolation of subtilisin pro-sequence mutations that affect formation of active protease by localized random polymerase chain reaction mutagenesis. The Journal of Biological Chemistry, 265(33), 20085–20086.PubMedGoogle Scholar
  26. 26.
    Smith, S. M., & Gottesman, M. M. (1989). Activity and deletion analysis of recombinant human cathepsin L expressed in Escherichia coli. The Journal of Biological Chemistry, 264(34), 20487–20495.PubMedGoogle Scholar
  27. 27.
    Ruan, B., Hoskins, J., & Bryan, P. N. (1999). Rapid folding of calcium-free subtilisin by a stabilized pro-domain mutant. Biochemistry, 38(26), 8562–8571.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Marisol Serrano
    • 1
  • Veronica Gonzalez
    • 1
  • Supriyo Ray
    • 1
  • Maria D. Chavez
    • 1
  • Mahesh Narayan
    • 1
    Email author
  1. 1.University of Texas at El PasoEl PasoUSA

Personalised recommendations