Skip to main content
Log in

Modified Metformin as a More Potent Anticancer Drug: Mitochondrial Inhibition, Redox Signaling, Antiproliferative Effects and Future EPR Studies

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Metformin, one of the most widely prescribed antidiabetic drugs in the world, is being repurposed as a potential drug in cancer treatment. Epidemiological studies suggest that metformin exerts anticancer effects in diabetic patients with pancreatic cancer. However, at typical antidiabetic doses the bioavailability of metformin is presumably too low to exert antitumor effects. Thus, more potent analogs of metformin are needed in order to increase its anticancer efficacy. To this end, a new class of mitochondria-targeted metformin analogs (or mito-metformins) containing a positively-charged lipophilic triphenylphosphonium group was synthesized and tested for their antitumor efficacy in pancreatic cancer cells. Results indicate that the lead compound, mito-metformin10, was nearly 1000-fold more potent than metformin in inhibiting mitochondrial complex I activity, inducing reactive oxygen species (superoxide and hydrogen peroxide) that stimulate redox signaling mechanisms, including the activation of adenosinemonophosphate kinase and inhibition of proliferation of pancreatic cancer cells. The potential use of the low-temperature electron paramagnetic resonance technique in assessing the role of mitochondrial complexes including complex I in tumor regression in response to metformin and mito-metformins in the in vivo setting is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bailey, C., & Day, C. (2004). Metformin: Its botanical background. Practical Diabetes International, 21, 115–117.

    Article  Google Scholar 

  2. Thomas, I., & Gregg, B. (2017). Metformin; A review of its history and future: From lilac to longevity. Pediatric Diabetes, 18, 10–16.

    Article  PubMed  Google Scholar 

  3. Evans, J. M., Donnelly, L. A., Emslie-Smith, A. M., Alessi, D. R., & Morris, A. D. (2005). Metformin and reduced risk of cancer in diabetic patients. BMJ (Clinical Research Ed.), 330, 1304–1305.

    Article  Google Scholar 

  4. Heckman-Stoddard, B. M., Gandini, S., Puntoni, M., Dunn, B. K., Decensi, A., & Szabo, E. (2016). Repurposing old drugs to chemoprevention: The case of metformin. Seminars in Oncology, 43, 123–133.

    Article  CAS  PubMed  Google Scholar 

  5. Kordes, S., Pollak, M. N., Zwinderman, A. H., Mathot, R. A., Weterman, M. J., Beeker, A., Punt, C. J., Richel, D. J., & Wilmink, J. W. (2015). Metformin in patients with advanced pancreatic cancer: A double-blind, randomised, placebo-controlled phase 2 trial. The Lancet Oncology, 16, 839–847.

    Article  CAS  PubMed  Google Scholar 

  6. Chandel, N. S., Avizonis, D., Reczek, C. R., Weinberg, S. E., Menz, S., Neuhaus, R., Christian, S., Haegebarth, A., Algire, C., & Pollak, M. (2016). Are metformin doses used in murine cancer models clinically relevant? Cell Metabolism, 23, 569–570.

    Article  CAS  PubMed  Google Scholar 

  7. Cheng, G., Zielonka, J., Ouari, O., Lopez, M., McAllister, D., Boyle, K., Barrios, C. S., Weber, J. J., Johnson, B. D., Hardy, M., Dwinell, M. B., & Kalyanaraman, B. (2016). Mitochondria-targeted analogues of metformin exhibit enhanced antiproliferative and radiosensitizing effects in pancreatic cancer cells. Cancer Research, 76, 3904–3915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Graham, G. G., Punt, J., Arora, M., Day, R. O., Doogue, M. P., Duong, J. K., Furlong, T. J., Greenfield, J. R., Greenup, L. C., Kirkpatrick, C. M., Ray, J. E., Timmins, P., & Williams, K. M. (2011). Clinical pharmacokinetics of metformin. Clinical Pharmacokinetics, 50, 81–98.

    Article  CAS  PubMed  Google Scholar 

  9. Foretz, M., Guigas, B., Bertrand, L., Pollak, M., & Viollet, B. (2014). Metformin: From mechanisms of action to therapies. Cell Metabolism, 20, 953–966.

    Article  CAS  PubMed  Google Scholar 

  10. Bridges, H., Jones, A., Pollak, M., & Hirst, J. (2014). Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. The Biochemical Journal, 462, 475–487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu, X., Romero, I. L., Litchfield, L. M., Lengyel, E., & Locasale, J. W. (2016). Metformin targets central carbon metabolism and reveals mitochondrial requirements in human cancers. Cell Metabolism, 24, 728–739.

    Article  CAS  PubMed  Google Scholar 

  12. Wheaton, W. W., Weinberg, S. E., Hamanaka, R. B., Soberanes, S., Sullivan, L. B., Anso, E., Glasauer, A., Dufour, E., Mutlu, G. M., Budigner, G. S., & Chandel, N. S. (2014). Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. eLife, 3, e02242.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Birsoy, K., Possemato, R., Lorbeer, F. K., Bayraktar, E. C., Thiru, P., Yucel, B., Wang, T., Chen, W. W., Clish, C. B., & Sabatini, D. M. (2014). Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature, 508, 108–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pollak, M. (2014). Overcoming drug development bottlenecks with repurposing: Repurposing biguanides to target energy metabolism for cancer treatment. Nature Medicine, 20, 591–593.

    Article  CAS  PubMed  Google Scholar 

  15. Eikawa, S., Nishida, M., Mizukami, S., Yamazaki, C., Nakayama, E., & Udono, H. (2015). Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proceedings of the National Academy of Sciences, 112, 1809–1814.

    Article  CAS  Google Scholar 

  16. Webb, T. J., Carey, G. B., East, J. E., Sun, W., Bollino, D. R., Kimball, A. S., Brutkiewicz, R. R., & Flajnik, M. (2016). Alterations in cellular metabolism modulate CD1d-mediated NKT-cell responses. Pathogens and Disease, 74, ftw055–ftw055.

    Article  PubMed  Google Scholar 

  17. Delmastro-Greenwood, M. M., & Piganelli, J. D. (2013). Changing the energy of an immune response. American Journal of Clinical and Experimental Immunology, 2, 30–54.

    PubMed  PubMed Central  Google Scholar 

  18. Cheng, G., Zielonka, J., McAllister, D., Hardy, M., Ouari, O., Joseph, J., Dwinell, M. B., & Kalyanaraman, B. (2015). Antiproliferative effects of mitochondria-targeted cationic antioxidants and analogs: Role of mitochondrial bioenergetics and energy-sensing mechanism. Cancer Letters, 365, 96–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cheng, G., Zielonka, J., Dranka, B. P., McAllister, D., Mackinnon, Jr., A. C., Joseph, J., & Kalyanaraman, B. (2012). Mitochondria-targeted drugs synergize with 2-deoxyglucose to trigger breast cancer cell death. Cancer Research, 72, 2634–2644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cheng, G., Zielonka, J., McAllister, D., Tsai, S., Dwinell, M. B., & Kalyanaraman, B. (2014). Profiling and targeting of cellular bioenergetics: Inhibition of pancreatic cancer cell proliferation. British Journal of Cancer, 111, 85–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cheng, G., Zielonka, J., McAllister, D. M., Mackinnon, Jr., A. C., Joseph, J., Dwinell, M. B., & Kalyanaraman, B. (2013). Mitochondria-targeted vitamin E analogs inhibit breast cancer cell energy metabolism and promote cell death. BMC Cancer, 13, 285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dickey, J. S., Gonzalez, Y., Aryal, B., Mog, S., Nakamura, A. J., Redon, C. E., Baxa, U., Rosen, E., Cheng, G., Zielonka, J., Parekh, P., Mason, K. P., Joseph, J., Kalyanaraman, B., Bonner, W., Herman, E., Shacter, E., & Rao, V. A. (2013). Mito-tempol and dexrazoxane exhibit cardioprotective and chemotherapeutic effects through specific protein oxidation and autophagy in a syngeneic breast tumor preclinical model. PLoS ONE, 8, e70575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rao, V. A., Klein, S. R., Bonar, S. J., Zielonka, J., Mizuno, N., Dickey, J. S., Keller, P. W., Joseph, J., Kalyanaraman, B., & Shacter, E. (2010). The antioxidant transcription factor Nrf2 negatively regulates autophagy and growth arrest induced by the anticancer redox agent mitoquinone. The Journal of Biological Chemistry, 285, 34447–34459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao, H., Joseph, J., Fales, H. M., Sokoloski, E. A., Levine, R. L., Vasquez-Vivar, J., & Kalyanaraman, B. (2005). Detection and characterization of the product of hydroethidine and intracellular superoxide by HPLC and limitations of fluorescence. Proceedings of the National Academy of Sciences of the United States of America, 102, 5727–5732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zielonka, J., & Kalyanaraman, B. (2010). Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: Another inconvenient truth. Free Radical Biology & Medicine, 48, 983–1001.

    Article  CAS  Google Scholar 

  26. Zielonka, J., Vasquez-Vivar, J., & Kalyanaraman, B. (2008). Detection of 2-hydroxyethidium in cellular systems: A unique marker product of superoxide and hydroethidine. Nature Protocols, 3, 8–21.

    Article  CAS  PubMed  Google Scholar 

  27. Zielonka, J., Hardy, M., & Kalyanaraman, B. (2009). HPLC study of oxidation products of hydroethidine in chemical and biological systems: Ramifications in superoxide measurements. Free Radical Biology and Medicine, 46, 329–338.

    Article  CAS  PubMed  Google Scholar 

  28. Zielonka, J., Srinivasan, S., Hardy, M., Ouari, O., Lopez, M., Vasquez-Vivar, J., Avadhani, N. G., & Kalyanaraman, B. (2008). Cytochrome c-mediated oxidation of hydroethidine and mito-hydroethidine in mitochondria: Identification of homo- and heterodimers. Free Radical Biology and Medicine, 44, 835–846.

    Article  CAS  PubMed  Google Scholar 

  29. Sikora, A., Zielonka, J., Adamus, J., Debski, D., Dybala-Defratyka, A., Michalowski, B., Joseph, J., Hartley, R. C., Murphy, M. P., & Kalyanaraman, B. (2013). Reaction between peroxynitrite and triphenylphosphonium-substituted arylboronic acid isomers: Identification of diagnostic marker products and biological implications. Chemical Research in Toxicology, 26, 856–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zielonka, J., Sikora, A., Adamus, J., & Kalyanaraman, B. (2015). Detection and differentiation between peroxynitrite and hydroperoxides using mitochondria-targeted arylboronic acid. Methods in Molecular Biology, 1264, 171–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zielonka, J., Zielonka, M., VerPlank, L., Cheng, G., Hardy, M., Ouari, O., Ayhan, M. M., Podsiadly, R., Sikora, A., Lambeth, J. D., & Kalyanaraman, B. (2016). Mitigation of NADPH oxidase 2 activity as a strategy to inhibit peroxynitrite formation. The Journal of Biological chemistry, 291, 7029–7044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hardie, D. G., & Ashford, M. L. (2014). AMPK: Regulating energy balance at the cellular and whole body levels. Physiology (Bethesda, Md.), 29, 99–107.

    CAS  Google Scholar 

  33. Mackenzie, R. M., Salt, I. P., Miller, W. H., Logan, A., Ibrahim, H. A., Degasperi, A., Dymott, J. A., Hamilton, C. A., Murphy, M. P., Delles, C., & Dominiczak, A. F. (2013). Mitochondrial reactive oxygen species enhance AMP-activated protein kinase activation in the endothelium of patients with coronary artery disease and diabetes. Clinical Science 124, 403–411.

    Google Scholar 

  34. Quintero, M., Colombo, S. L., Godfrey, A., & Moncada, S. (2006). Mitochondria as signaling organelles in the vascular endothelium. Proceedings of the National Academy of Sciences of the United States of America, 103, 5379–5384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Boukalova, S., Stursa, J., Werner, L., Ezrova, Z., Cerny, J., Bezawork-Geleta, A., Pecinova, A., Dong, L., Drahota, Z., & Neuzil, J. (2016). Mitochondrial targeting of metformin enhances its activity against pancreatic cancer. Molecular Cancer Therapeutics, 15, 2875–2886.

    Article  CAS  PubMed  Google Scholar 

  36. Orme-Johnson, N. R., Hansen, R. E., & Beinert, H. (1974). Electron paramagnetic resonance-detectable electron acceptors in beef heart mitochondria. Reduced diphosphopyridine nucleotide ubiquinone reductase segment of the electron transfer system. The Journal of Biological Chemistry, 249, 1922–1927.

    CAS  PubMed  Google Scholar 

  37. Chandran, K., Aggarwal, D., Migrino, R. Q., Joseph, J., McAllister, D., Konorev, E. A., Antholine, W. E., Zielonka, J., Srinivasan, S., Avadhani, N. G., & Kalyanaraman, B. (2009). Doxorubicin inactivates myocardial cytochrome c oxidase in rats: Cardioprotection by Mito-Q. Biophysical Journal, 96, 1388–1398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bennett, B., Helbling, D., Meng, H., Jarzembowski, J., Geurts, A. M., Friederich, M. W., Van Hove, J. L. K., Lawlor, M. W., & Dimmock, D. P. (2016). Potentially diagnostic electron paramagnetic resonance spectra elucidate the underlying mechanism of mitochondrial dysfunction in the deoxyguanosine kinase deficient rat model of a genetic mitochondrial DNA depletion syndrome. Free Radical Biology and Medicine, 92, 141–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ghosh, A., Chandran, K., Kalivendi, S. V., Joseph, J., Antholine, W. E., Hillard, C. J., Kanthasamy, A., Kanthasamy, A., & Kalyanaraman, B. (2010). Neuroprotection by a mitochondria-targeted drug in a Parkinson’s disease model. Free Radical Biology & Medicine, 49, 1674–1684.

    Article  CAS  Google Scholar 

  40. Sobotta, M. C., Liou, W., Stöcker, S., Talwar, D., Oehler, M., Ruppert, T., Scharf, A. N. D., & Dick, T. P. (2015). Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nature Chemical Biology, 11, 64–70.

    Article  CAS  PubMed  Google Scholar 

  41. Babot, M., Birch, A., Labarbuta, P., & Galkin, A. (2014). Characterisation of the active/de-active transition of mitochondrial complex I. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1837, 1083–1092.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by a grant from NIH (U01 CA178960) to M.D. and B.K. A.S. was supported by a grant from Polish National Science Centre No. 2015/18/E/ST4/00235.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balaraman Kalyanaraman.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalyanaraman, B., Cheng, G., Hardy, M. et al. Modified Metformin as a More Potent Anticancer Drug: Mitochondrial Inhibition, Redox Signaling, Antiproliferative Effects and Future EPR Studies. Cell Biochem Biophys 75, 311–317 (2017). https://doi.org/10.1007/s12013-017-0796-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-017-0796-3

Keywords

Navigation