Skip to main content
Log in

A Review of 3D Printing Techniques and the Future in Biofabrication of Bioprinted Tissue

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

3D printing has been around in the art, micro-engineering, and manufacturing worlds for decades. Similarly, research for traditionally engineered skin tissue has been in the works since the 1990s. As of recent years, the medical field also began to take advantage of the untapped potential of 3D printing for the biofabrication of tissue. To do so, researchers created a set of goals for fabricated tissues based on the characteristics of natural human tissues and organs. Fabricated tissue was then measured against this set of standards. Researchers were interested in not only creating tissue that functioned like natural tissues but in creating techniques for 3D printing that would print tissues quickly, efficiently, and ultimately result in the ability to mass produce fabricated tissues. Three promising methods of 3D printing emerged from their research: thermal inkjet printing with bioink, direct-write bioprinting, and organ printing using tissue spheroids. This review will discuss all three printing techniques, as well as their advantages, disadvantages, and the possibility of future advancements in the field of tissue fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mironov, V., et al. (2009). Organ printing: Tissue spheroids as building blocks. Biomaterials, 30(12), 2164–2174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cui, X., et al. (2012). Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Patents on Drug Delivery & Formulation, 6(2), 149–155.

    Article  CAS  Google Scholar 

  3. Chang, C. C., et al. (2011). Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 98(1), 160–170.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jakab, K., et al. (2008). Relating cell and tissue mechanics: Implications and applications. Developmental Dynamics, 237(9), 2438–2449.

    Article  PubMed  Google Scholar 

  5. Dean, D. M., & Morgan, J. R. (2008). Cytoskeletal-mediated tension modulates the directed self-assembly of microtissues. Tissue Engineering Part A, 14(12), 1989–1997.

    Article  CAS  PubMed  Google Scholar 

  6. Ozbolat, I. T., & Yu, Y. (2013). Bioprinting toward organ fabrication: Challenges and future trends. IEEE Transactions on Biomedical Engineering, 60(3), 691–699.

    Article  PubMed  Google Scholar 

  7. Chang, R., Nam, J., & Sun, W. (2008). Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Engineering Part A, 14(1), 41–48.

    Article  CAS  PubMed  Google Scholar 

  8. Cohen, D. L., et al. (2006). Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Engineering, 12(5), 1325–1335.

    Article  CAS  PubMed  Google Scholar 

  9. Owczarczak, A. B., et al. (2012). Creating transient cell membrane pores using a standard inkjet printer. Journal of Visualized Experiments, 61, e3681.

    Google Scholar 

  10. Jang, D., Kim, D., & Moon, J. (2009). Influence of fluid physical properties on ink-jet printability. Langmuir, 25(5), 2629–2635.

    Article  CAS  PubMed  Google Scholar 

  11. Khan, M. S., et al. (2010). Biosurface engineering through ink jet printing. Colloids Surf B Biointerfaces, 75(2), 441–447.

    Article  CAS  PubMed  Google Scholar 

  12. Christensen, K., et al. (2015). Freeform inkjet printing of cellular structures with bifurcations. Biotechnology and Bioengineering, 112(5), 1047–1055.

    Article  CAS  PubMed  Google Scholar 

  13. Saunders, R. E., Gough, J. E., & Derby, B. (2008). Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials, 29(2), 193–203.

    Article  CAS  PubMed  Google Scholar 

  14. Gao, G., & Cui, X. (2016). Three-dimensional bioprinting in tissue engineering and regenerative medicine. Biotechnology Letters, 38(2), 203–211.

    Article  CAS  PubMed  Google Scholar 

  15. Xu, T., et al. (2013). Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials, 34(1), 130–139.

    Article  PubMed  Google Scholar 

  16. Cui, X., et al. (2010). Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells. Biotechnology and Bioengineering, 106(6), 963–969.

    Article  CAS  PubMed  Google Scholar 

  17. Ventola, C. L. (2014). Medical applications for 3D printing: Current and projected uses. P T, 39(10), 704–711.

    PubMed  PubMed Central  Google Scholar 

  18. Wust, S., Muller, R., & Hofmann, S. (2011). Controlled positioning of cells in biomaterials-approaches towards 3D tissue printing. Journal of Functional Biomaterials, 2(3), 119–154.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lysaght, M. J., Jaklenec, A., & Deweerd, E. (2008). Great expectations: Private sector activity in tissue engineering, regenerative medicine, and stem cell therapeutics. Tissue Engineering Part A, 14(2), 305–315.

    Article  PubMed  Google Scholar 

  20. Cui, X., et al. (2012). Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Engineering Part A, 18(11–12), 1304–1312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chou, A. I., Akintoye, S. O., & Nicoll, S. B. (2009). Photo-crosslinked alginate hydrogels support enhanced matrix accumulation by nucleus pulposus cells in vivo. Osteoarthritis Cartilage, 17(10), 1377–1384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, N., et al. (2012). Cell adhesion on an artificial extracellular matrix using aptamer-functionalized PEG hydrogels. Biomaterials, 33(5), 1353–1362.

    Article  CAS  PubMed  Google Scholar 

  23. Kwon, H., et al. (2016). Articular cartilage tissue engineering: The role of signaling molecules. Cellular and Molecular Life Sciences, 73(6), 1173–1194.

    Article  CAS  PubMed  Google Scholar 

  24. Cui, X., & Boland, T. (2009). Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials, 30(31), 6221–6227.

    Article  CAS  PubMed  Google Scholar 

  25. Smith, C. M., et al. (2004). Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue Engineering, 10(9–10), 1566–1576.

    Article  CAS  PubMed  Google Scholar 

  26. Chang, C. C., & Hoying, J. B. (2006). Directed three-dimensional growth of microvascular cells and isolated microvessel fragments. Cell Transplantation, 15(6), 533–540.

    Article  PubMed  Google Scholar 

  27. Jakab, K., et al. (2006). Three-dimensional tissue constructs built by bioprinting. Biorheology, 43(3–4), 509–513.

    PubMed  Google Scholar 

  28. Norotte, C., et al. (2009). Scaffold-free vascular tissue engineering using bioprinting. Biomaterials, 30(30), 5910–5917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jakab, K., et al. (2008). Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Engineering Part A, 14(3), 413–421.

    Article  CAS  PubMed  Google Scholar 

  30. Dellinger, J. G., Cesarano, J, 3rd, & Jamison, R. D. (2007). Robotic deposition of model hydroxyapatite scaffolds with multiple architectures and multiscale porosity for bone tissue engineering. Journal of Biomedical Materials Research Part A, 82(2), 383–394.

    Article  PubMed  Google Scholar 

  31. Lee, M., Dunn, J. C., & Wu, B. M. (2005). Scaffold fabrication by indirect three-dimensional printing. Biomaterials, 26(20), 4281–4289.

    Article  CAS  PubMed  Google Scholar 

  32. Smith, C. M., et al. (2007). Characterizing environmental factors that impact the viability of tissue-engineered constructs fabricated by a direct-write bioassembly tool. Tissue Engineering, 13(2), 373–383.

    Article  CAS  PubMed  Google Scholar 

  33. Gasperini, L., Mano, J. F., & Reis, R. L. (2014). Natural polymers for the microencapsulation of cells. Journal of the Royal Society, Interface, 11(100), 20140817.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Murphy, C. M., Haugh, M. G., & O’Brien, F. J. (2010). The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials, 31(3), 461–466.

    Article  CAS  PubMed  Google Scholar 

  35. Engler, A. J., et al. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126(4), 677–689.

    Article  CAS  PubMed  Google Scholar 

  36. Williams, D. F. (2008). On the mechanisms of biocompatibility. Biomaterials, 29(20), 2941–2953.

    Article  CAS  PubMed  Google Scholar 

  37. Mason, C. (2007). Regenerative medicine 2.0. Regen Med, 2(1), 11–18.

    Article  PubMed  Google Scholar 

  38. Perez-Pomares, J. M., & Foty, R. A. (2006). Tissue fusion and cell sorting in embryonic development and disease: Biomedical implications. BioEssays, 28(8), 809–821.

    Article  PubMed  Google Scholar 

  39. Whitesides, G. M., & Grzybowski, B. (2002). Self-assembly at all scales. Science, 295(5564), 2418–2421.

    Article  CAS  PubMed  Google Scholar 

  40. Ozbolat, I. T., & Hospodiuk, M. (2016). Current advances and future perspectives in extrusion-based bioprinting. Biomaterials, 76, 321–343.

    Article  CAS  PubMed  Google Scholar 

  41. Barralet, J., et al. (2009). Angiogenesis in calcium phosphate scaffolds by inorganic copper ion release. Tissue Engineering Part A, 15(7), 1601–1609.

    Article  CAS  PubMed  Google Scholar 

  42. Borselli, C., et al. (2010). Bioactivation of collagen matrices through sustained VEGF release from PLGA microspheres. Journal of Biomedical Materials Research A, 92(1), 94–102.

    Article  Google Scholar 

Download references

Author Contributions

SP and VY prepared the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyajit Patra.

Ethics declarations

Conflicts of Interest

All authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patra, S., Young, V. A Review of 3D Printing Techniques and the Future in Biofabrication of Bioprinted Tissue. Cell Biochem Biophys 74, 93–98 (2016). https://doi.org/10.1007/s12013-016-0730-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-016-0730-0

Keywords

Navigation