Skip to main content

Advertisement

Log in

Hyperhomocysteinemia Alters Sinoatrial and Atrioventricular Nodal Function: Role of Magnesium in Attenuating These Effects

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Patients with hyperhomocysteinemia (HHcy), or elevated plasma homocysteine (Hcy), are at higher risk of developing arrhythmias and sudden cardiac death; however, the mechanisms are unknown. In this study, the effects of HHcy on sinus node function, atrioventricular conduction, and ventricular vulnerability were investigated by electrophysiological (EP) analysis, and the role of magnesium (Mg2+), an endogenous N-methyl-d-aspartate (NMDA) receptor antagonist, in attenuating EP changes due to HHcy was explored. Wild-type mice (WT) and mice receiving Hcy in the drinking water for 12 weeks (DW) were subjected to electrocardiographic and EP studies. DW compared to WT had significantly shorter RR, PR, QT, and HV intervals, corrected sinus node recovery times (CSNRT), Wenckebach periodicity (WP), atrioventricular nodal effective refractory periods (AVNERP), and right ventricular effective refractory periods (RVERP). To examine the role of Mg2+ in mitigating conduction changes in HHcy, WT, DW, and heterozygous cystathionine-β-synthase knockout mice (CBS +/−) were subjected to repeat EP studies before and after administration of low-dose magnesium sulfate (20 mg/kg). Mg2+ had no effect on EP variables in WT, but significantly slowed CSNRT, WP, and AVNERP in DW, as well as WP and AVNERP in CBS +/−. These findings suggest that ionic channels modulated by Mg2+ may contribute to HHcy-induced conduction abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Maldonado, C., Soni, C. V., Todnem, N. D., Pushpakumar, S., Rosenberger, D., Givvimani, S., et al. (2010). Hyperhomocysteinemia and sudden cardiac death: Potential arrhythmogenic mechanisms. Current Vascular Pharmacology, 8, 64–74.

    Article  CAS  PubMed  Google Scholar 

  2. Rosenberger, D., Gargoum, R., Tyagi, N., Metreveli, N., Sen, U., Maldonado, C., et al. (2011). Homocysteine enriched diet leads to prolonged QT interval and reduced left ventricular performance in telemetric monitored mice. Nutrition, Metabolism and Cardiovascular Diseases, 21, 492–498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lipton, S. A., Kim, W. K., Choi, Y. B., Kumar, S., D’Emilia, D. M., Rayudu, P. V., et al. (1997). Neurotoxicity associated with dual actions of homocysteine at the N-methyl-D-aspartate receptor. Proceedings of the National Academy of Sciences, 94, 5923–5928.

    Article  CAS  Google Scholar 

  4. Gill, S. S., Pulido, O. M., Mueller, R. W., & McGuire, P. F. (1998). Molecular and immunochemical characterization of the ionotropic glutamate receptors in the rat heart. Brain Research Bulletin, 46, 429–434.

    Article  CAS  PubMed  Google Scholar 

  5. Mueller, R. W., Gill, S. S., & Pulido, O. M. (2003). The monkey (Macaca fascicularis) heart neural structures and conducting system: An immunochemical study of selected neural biomarkers and glutamate receptors. Toxicologic Pathology, 31, 227–234.

    CAS  PubMed  Google Scholar 

  6. Gill, S., Veinot, J., Kavanagh, M., & Pulido, O. (2007). Human heart glutamate receptors—implications for toxicology, food safety, and drug discovery. Toxicologic Pathology, 35, 411–417.

    Article  CAS  PubMed  Google Scholar 

  7. Winter, C. R., & Baker, R. C. (1995). L-glutamate-induced changes in intracellular calcium oscillation frequency through non-classical glutamate receptor binding in cultured rat myocardial cells. Life Sciences, 57, 1925–1934.

    Article  CAS  PubMed  Google Scholar 

  8. Huang, M. H., Wolf, S. G., & Armour, J. A. (1994). Ventricular arrhythmias induced by chemically modified intrinsic cardiac neurones. Cardiovascular Research, 28, 636–642.

    Article  CAS  PubMed  Google Scholar 

  9. D’Amico, M., Di, F. C., Rossi, F., & Rossi, F. (1999). Arrhythmias induced by myocardial ischaemia-reperfusion are sensitive to ionotropic excitatory amino acid receptor antagonists. European Journal of Pharmacology, 366, 167–174.

    Article  PubMed  Google Scholar 

  10. Mayer, M. L., Westbrook, G. L., & Guthrie, P. B. (1984). Voltage-dependent block by Mg2+of NMDA responses in spinal cord neurones. Nature, 309, 261–263.

    Article  CAS  PubMed  Google Scholar 

  11. Hart, C. Y., Burnett, J. C, Jr, & Redfield, M. M. (2001). Effects of avertin versus xylazine-ketamine anesthesia on cardiac function in normal mice. American Journal of Physiology Heart and Circulatory Physiology, 281, H1938–H1945.

    CAS  PubMed  Google Scholar 

  12. Charbit, B., Samain, E., Merckx, P., & Funck-Brentano, C. (2006). QT interval measurement: Evaluation of automatic QTc measurement and new simple method to calculate and interpret corrected QT interval. Anesthesiology, 104, 255–260.

    Article  PubMed  Google Scholar 

  13. Zappacosta, B., Persichilli, S., Minucci, A., Scribano, D., Baroni, S., Fasanella, S., et al. (2006). Evaluation of a new enzymatic method for homocysteine measurement. Clinical Biochemistry, 39, 62–66.

    Article  CAS  PubMed  Google Scholar 

  14. Crunelli, V., & Mayer, M. L. (1984). Mg2+ dependence of membrane resistance increases evoked by NMDA in hippocampal neurones. Brain Research, 311, 392–396.

    Article  CAS  PubMed  Google Scholar 

  15. Poddar, R., & Paul, S. (2009). Homocysteine-NMDA receptor-mediated activation of extracellular signal-regulated kinase leads to neuronal cell death. Journal of Neurochemistry, 110, 1095–1106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Doronzo, G., Russo, I., Del Mese, P., Viretto, M., Mattiello, L., Trovati, M., et al. (2009). Role of NMDA receptor in homocysteine-induced activation of mitogen-activated protein kinase and phosphatidyl inositol 3-kinase pathways in cultured human vascular smooth muscle cells. Thrombosis Research, 125, e23–e32.

    Article  PubMed  Google Scholar 

  17. Qureshi, I., Chen, H., Brown, A. T., Fitzgerald, R., Zhang, X., Breckenridge, J., et al. (2005). Homocysteine-induced vascular dysregulation is mediated by the NMDA receptor. Vascular Medicine, 10, 215–223.

    Article  PubMed  Google Scholar 

  18. Chen, H., Fitzgerald, R., Brown, A. T., Qureshi, I., Breckenridge, J., Kazi, R., et al. (2005). Identification of a homocysteine receptor in the peripheral endothelium and its role in proliferation. Journal of Vascular Surgery, 41, 853–860.

    Article  PubMed  Google Scholar 

  19. Moshal, K. S., Tipparaju, S. M., Vacek, T. P., Kumar, M., Singh, M., Frank, I. E., et al. (2008). Mitochondrial matrix metalloproteinase activation decreases myocyte contractility in hyperhomocysteinemia. American Journal of Physiology Heart and Circulatory Physiology, 295, H890–H897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moshal, K. S., Kumar, M., Tyagi, N., Mishra, P. K., Metreveli, N., Rodriguez, W. E., et al. (2009). Restoration of contractility in hyperhomocysteinemia by cardiac-specific deletion of NMDA-R1. American Journal of Physiology Heart and Circulatory Physiology, 296, H887–H892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lewis, S. J., Barres, C., Jacob, H. J., Ohta, H., & Brody, M. J. (1989). Cardiovascular effects of the N-methyl-D-aspartate receptor antagonist MK-801 in conscious rats. Hypertension, 13, 759–765.

    Article  CAS  PubMed  Google Scholar 

  22. Canesin, R. O., Bonagamba, L. G., & Machado, B. H. (2000). Bradycardic and hypotensive responses to microinjection of L-glutamate into the lateral aspect of the commissural NTS are blocked by an NMDA receptor antagonist. Brain Research, 852, 68–75.

    Article  CAS  PubMed  Google Scholar 

  23. Rosenberger D. (2009). Homocysteine Induced Arrhythmogenesis: Role of Connexins and Activation of N-Methyl-D-Aspartate (NMDA)-NR1 Receptor. 1-171. Thesis/Dissertation, University of Louisville.

  24. Meloni, B. P., Zhu, H., & Knuckey, N. W. (2006). Is magnesium neuroprotective following global and focal cerebral ischaemia? A review of published studies. Magnesium Research, 19, 123–137.

    CAS  PubMed  Google Scholar 

  25. Stiles, M. K., Sanders, P., Disney, P., Brooks, A., John, B., Lau, D. H., et al. (2007). Differential effects of intravenous magnesium on atrioventricular node conduction in supraventricular tachycardia. American Journal of Cardiology, 100, 1249–1253.

    Article  CAS  PubMed  Google Scholar 

  26. Viskin, S., Belhassen, B., Sheps, D., & Laniado, S. (1992). Clinical and electrophysiologic effects of magnesium sulfate on paroxysmal supraventricular tachycardia and comparison with adenosine triphosphate. American Journal of Cardiology, 70, 879–885.

    Article  CAS  PubMed  Google Scholar 

  27. DiCarlo, L. A, Jr, Morady, F., de Buitleir, M., Krol, R. B., Schurig, L., & Annesley, T. M. (1986). Effects of magnesium sulfate on cardiac conduction and refractoriness in humans. Journal of the American College of Cardiology, 7, 1356–1362.

    Article  PubMed  Google Scholar 

  28. Rasmussen, H. S., & Thomsen, P. E. (1989). The electrophysiological effects of intravenous magnesium on human sinus node, atrioventricular node, atrium, and ventricle. Clinical Cardiology, 12, 85–90.

    Article  CAS  PubMed  Google Scholar 

  29. Kulick, D. L., Hong, R., Ryzen, E., Rude, R. K., Rubin, J. N., Elkayam, U., et al. (1988). Electrophysiologic effects of intravenous magnesium in patients with normal conduction systems and no clinical evidence of significant cardiac disease. American Heart Journal, 115, 367–373.

    Article  CAS  PubMed  Google Scholar 

  30. Keren, A., Dorian, P., Davy, J. M., & Opie, L. H. (1988). Effects of magnesium on ischemic and reperfusion arrhythmias in the rat heart and electrophysiologic effects of hypermagnesemia in the anesthetized dog. Cardiovascular Drugs and Therapy, 2, 637–645.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Institutes of Health Grants HL-88012, HL-74185, and HL-71010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chirag V. Soni.

Ethics declarations

Disclosures

The authors report no conflicts of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soni, C.V., Tyagi, S.C., Todnem, N.D. et al. Hyperhomocysteinemia Alters Sinoatrial and Atrioventricular Nodal Function: Role of Magnesium in Attenuating These Effects. Cell Biochem Biophys 74, 59–65 (2016). https://doi.org/10.1007/s12013-015-0711-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-015-0711-8

Keywords

Navigation