Skip to main content

Advertisement

Log in

Biological Modulation of Mouse RPE Cells in Response to Subthreshold Diode Micropulse Laser Treatment

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Many clinical trials have demonstrated the effectiveness of subthreshold phototherapy with no visible damage in retinal vascular diseases, such as diabetic retinopathy. We aimed primarily to investigate the effect of subthreshold diode micropulse laser (SDM) treatment on mouse retinal pigmented epithelium (RPE) cells. The expression of angiogenesis-modulating cytokines in response to SDM was also explored. The least toxic laser dose was selected by measuring cell viability with MTT assay and 5 % duty cycle (DC) was chosen for use in further experiments. RPE cells were treated with laser-induced radiation ranging from 0 to 400 mW for 24 h. The apoptotic rate of RPE cells was assessed by flow cytometry. Expressions of vascular endothelial growth factor A (VEGF-A), transforming growth factor beta (TGF-β), basic fibroblast growth factor (bFGF), and pigment epithelium-derived factor (PEDF) were determined by Western Blotting and real-time PCR, respectively. After 24 h of laser irradiation, cell viability was reduced dose dependently and the effect was significant compared to the controls (P < 0.05). In addition, laser treatment with intensities of 100 and 200 mW with DC of 5 % produced no significant effect on cell viability and apoptosis as compared with the control group (P > 0.05). The protein and mRNA expressions of angiogenic stimulators (VEGF-A, TGF-β, and bFGF) were significantly down-regulated (P < 0.05), whereas those of the angiogenic inhibitor (PEDF) were up-regulated (P < 0.05). No significant difference was found between the cells treated with different intensities of laser radiation (P > 0.05). Our results showed that SDM treatment of the RPE cells suppressed the expression of choroid neovasculization-promoting cytokines and up-regulated the angiogenic inhibitor, PEDF without damaging the cells. Further investigation is needed to understand the mechanism and to optimize the use of SDM as a novel method of treatment for retinal vascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kiire, C., Sivaprasad, S., & Chong, V. (2011). Subthreshold micropulse laser therapy for retinal disorders. Retina Today, 1, 67–70.

    Google Scholar 

  2. Mainster, M. A. (1999). Decreasing retinal photocoagulation damage: Principles and techniques. Seminars in Ophthalmology, 14(4), 200–209.

    Article  CAS  PubMed  Google Scholar 

  3. Ferrara, N., Gerber, H. P., & LeCouter, J. (2003). The biology of VEGF and its receptors. Nature Medicine, 9, 669–676.

    Article  CAS  PubMed  Google Scholar 

  4. King, G. L., & Suzuma, K. (2000). Pigment-epithelium-derived factor—A key coordinator of retinal neuronal and vascular functions. New England Journal of Medicine, 342, 349–351.

    Article  CAS  PubMed  Google Scholar 

  5. The Diabetes Control and Complications Trial Research Group. (1993). The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. New England Journal of Medicine, 329, 977–986.

    Article  Google Scholar 

  6. Shah, A. M., Bressler, N. M., & Jampol, L. M. (2011). Does laser still have a role in the management of retinal vascular and neovascular diseases? American Journal of Ophthalmology, 152, 332–339.

    Article  PubMed  Google Scholar 

  7. Schatz, H., Madeira, D., McDonald, H. R., & Johnson, R. N. (1991). Progressive enlargement of laser scars following grid laser photocoagulation for diffuse diabetic macular edema. Archives of Ophthalmology, 109, 1549–1551.

    Article  CAS  PubMed  Google Scholar 

  8. Early Treatment Diabetic Retinopathy Study Research Group. (1995). Focal photocoagulation treatment of diabetic macular edema. Relationship of treatment effect to fluorescein angiographic and other retinal characteristics at baseline: ETDRS report no. 19. Archives of Ophthalmology, 113, 1144–1155.

    Article  Google Scholar 

  9. Luttrull, J. K., Sramek, C., Palanker, D., Spink, C. J., & Musch, D. C. (2012). Long-term safety, high-resolution imaging, and tissue temperature modeling of subvisible diode micropulse photocoagulation for retinovascular macular edema. Retina, 32, 375–386.

    Article  PubMed  Google Scholar 

  10. Ohkoshi, K., & Yamaguchi, T. (2010). Subthreshold micropulse diode laser photocoagulation for diabetic macular edema in Japanese patients. American Journal of Ophthalmology, 149, 133–139.

    Article  PubMed  Google Scholar 

  11. Figueira, J., Khan, J., Nunes, S., Sivaprasad, S., Rosa, A., et al. (2009). Prospective randomised controlled trial comparing sub-threshold micropulse diode laser photocoagulation and conventional green laser for clinically significant diabetic macular oedema. British Journal of Ophthalmology, 93, 1341–1344.

    Article  CAS  PubMed  Google Scholar 

  12. Gao, X., & Xing, D. (2009). Molecular mechanisms of cell proliferation induced by low power laser irradiation. Journal of Biomedical Science, 16, 4.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Vujosevic, S., Bottega, E., Casciano, M., et al. (2010). Microperimetry and fundus autofluorescence in diabetic macular edema: subthreshold micropulse diode laser versus modified early treatment diabetic retinopathy study laser photocoagulation. Retina., 30(6), 908–916.

    Article  PubMed  Google Scholar 

  14. Laursen, M. L., Moeller, F., Sander, B., & Sjoelie, A. K. (2004). Subthreshold micropulse diode laser treatment in diabetic macular oedema. British Journal of Ophthalmology, 88, 1173–1179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dorin, G. (2004). Evolution of retinal laser therapy: minimum intensity photocoagulation (MIP). Can the laser heal the retina without harming it? Seminars in Ophthalmology, 19, 62–68.

    Article  PubMed  Google Scholar 

  16. Luttrull, J. K., Musch, D. C., & Mainster, M. A. (2005). Subthreshold diode micropulse photocoagulation for the treatment of clinically significant diabetic macular oedema. British Journal of Ophthalmology, 89, 74–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Meyer, C. H., & Holz, F. G. (2011). Preclinical aspects of anti-VEGF agents for the treatment of wet AMD: Ranibizumab and bevacizumab. Eye (London), 25, 661–672.

    Article  CAS  Google Scholar 

  18. Schatz, H., Madeira, D., McDonald, H. R., & Johnson, R. N. (1991). Progressive enlargement of laser scars following grid laser photocoagulation for diffuse diabetic macular edema. Archives of Ophthalmology, 109, 1549–1551.

    Article  CAS  PubMed  Google Scholar 

  19. Akrami, H., Soheili, Z.-S., Khalooghi, K., Ahmadieh, H., Rezaie-Kanavi, M., Samiei, S., et al. (2009). Retinal pigment epithelium culture; a potential source of retinal stem cells. Journal of Ophthalmic & Vision Research, 4(3), 134–141.

    CAS  Google Scholar 

  20. Dorin, G. (2003). Subthreshold and micropulse diode laser photocoagulation. Seminars in Ophthalmology, 18, 147–153.

    Article  PubMed  Google Scholar 

  21. Ohno-Matsui, K., Morita, I., Tombran-Tink, J., Mrazek, D., Onodera, M., et al. (2001). Novel mechanism for age-related macular degeneration: An equilibrium shift between the angiogenesis factors VEGF and PEDF. Journal of Cellular Physiology, 189, 323–333.

    Article  CAS  PubMed  Google Scholar 

  22. Sohn, H. J., Han, D. H., Kim, I. T., Oh, I. K., Kim, K. H., et al. (2011). Changes in aqueous concentrations of various cytokines after intravitreal triamcinolone versus bevacizumab for diabetic macular edema. American Journal of Ophthalmology, 152, 686–694.

    Article  CAS  PubMed  Google Scholar 

  23. Hogan, M. J., Alvarado, J. A., & Weddell, J. E. (1971). The retinal pigment epithelium. In M. J. Hogan, J. A. Alvarado, & J. E. Weddell (Eds.), Histology of the human eye (pp. 405–423). Philadelphia: W.B. Saunders.

    Google Scholar 

  24. Marmor, M. F. (1998). Structure, function, and disease of the retinal pigment epithelium. In M. F. Marmor & T. J. Wolfenberger (Eds.), The retinal pigment epithelium (pp. 3–12). New York: Oxford Press.

    Google Scholar 

  25. Folkman, J. (1995). Angiogenesis in cancer, vascular, rheumatoid, and other diseases. Nature Medicine, 1, 27–31.

    Article  CAS  PubMed  Google Scholar 

  26. Tatar, O., Kaiserling, E., Adam, A., Gelisken, F., Shinoda, K., et al. (2006). Consequences of verteporfin photodynamic therapy on choroidal neovascular membranes. Archives of Ophthalmology, 124, 815–823.

    Article  CAS  PubMed  Google Scholar 

  27. Chapman, J. A., & Beckey, C. (2006). Pegaptanib: A novel approach to ocular neovascularization. Annals of Pharmacotherapy, 40, 1322–1326.

    Article  CAS  PubMed  Google Scholar 

  28. Frank, R. N., Amin, R. H., Eliott, D., Puklin, J. E., & Abrams, G. W. (1996). Basic fibroblast growth factor and vascular endothelial growth factor are present in epiretinal and choroidal neovascular membranes. American Journal of Ophthalmology, 122, 393–403.

    Article  CAS  PubMed  Google Scholar 

  29. Matsuda, S., Gomi, F., Oshima, Y., Tohyama, M., & Tano, Y. (2005). Vascular endothelial growth factor reduced and connective tissue growth factor induced by triamcinolone in ARPE19 cells under oxidative stress. Investigative Ophthalmology & Visual Science, 46, 1062–1068.

    Article  Google Scholar 

  30. Okamoto, N., Tobe, T., Hackett, S. F., Ozaki, H., Vinores, M. A., LaRochelle, W., et al. (1997). Transgenic mice with increased expression of vascular endothelial growth factor in the retina. A new model of intraretinal and subretinal neovascularization. American Journal of Pathology, 151, 281–291.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Dawson, D. W., Volpert, O. V., Gillis, P., Crawford, S. E., Xu, H., et al. (1999). Pigment epithelium-derived factor: A potent inhibitor of angiogenesis. Science, 285, 245–248.

    Article  CAS  PubMed  Google Scholar 

  32. Ogata, N., Wada, M., Otsuji, T., Jo, N., Tombran-Tink, J., et al. (2002). Expression of pigment epithelium-derived factor in normal adult rat eye and experimental choroidal neovascularization. Investigative Ophthalmology & Visual Science, 43, 1168–1175.

    Google Scholar 

  33. Bhutto, I. A., McLeod, D. S., Hasegawa, T., Kim, S. Y., Merges, C., et al. (2006). Pigment epithelium-derived factor (PEDF) and vascular endothelial growth factor (VEGF) in aged human choroid and eyes with age-related macular degeneration. Experimental Eye Research, 82, 99–110.

    Article  CAS  PubMed  Google Scholar 

  34. Kliffen, M., Sharma, H. S., Mooy, C. M., Kerkvliet, S., & de Jong, P. T. (1997). Increased expression of angiogenic growth factors in age-related maculopathy. British Journal of Ophthalmology, 81, 154–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pertovaara, L., Kaipainen, A., Mustonen, T., Orpana, A., Ferrara, N., Saksela, O., et al. (1994). Vascular endothelial growth factor is induced in response to transforming growth factor-beta in fibroblastic and epithelial cells. Journal of Biological Chemistry, 269, 6271–6274.

    CAS  PubMed  Google Scholar 

  36. Renno, R. Z., Youssri, A. I., Michaud, N., Gragoudas, E. S., & Miller, J. W. (2002). Expression of pigment epithelium–derived factor in experimental choroidal neovascularisation. Investigative Ophthalmology & Visual Science, 43, 1574–1580.

    Google Scholar 

  37. Flaxel, C., Bradle, J., Acott, T., & Samples, J. R. (2007). Retinal pigment epithelium produces matrix metalloproteinases after laser treatment. Retina, 27, 629–634.

    Article  PubMed  Google Scholar 

  38. Matsumoto, Miho., Yoshimura, Nagahisa., & Honda, Yoshihito. (1994). Increased production of transforming growth factor-β2 from cultured human retinal pigment epithelial cells by photocoagulation. Investigative Ophthalmology & Visual Science, 35, 4245–4252.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was generously supported by grants from the National Natural Science Foundation of China (Nos. 61378084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Song, Y., Chen, X. et al. Biological Modulation of Mouse RPE Cells in Response to Subthreshold Diode Micropulse Laser Treatment. Cell Biochem Biophys 73, 545–552 (2015). https://doi.org/10.1007/s12013-015-0675-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-015-0675-8

Keywords

Navigation