Skip to main content
Log in

Overexpression of Hiwi Inhibits the Cell Growth of Chronic Myeloid Leukemia K562 Cells and Enhances Their Chemosensitivity to Daunomycin

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Chronic myeloid leukemia (CML) is a clonal disorder characterized by excessive accumulation of myeloid cells in the peripheral blood. In the present study, to investigate the role of Hiwi in leukemogenesis, lentivirus-mediated Hiwi overexpression was performed in a CML cell line, K562 cells. Our data revealed that Hiwi protein expression was undetectable in K562 cells, and its overexpression suppressed cell proliferation, induced cell cycle arrest at G0/G1 and G2/M phases, and promoted apoptosis in K562 cells in vitro. Expression of anti-apoptotic protein, Bcl-2, was decreased in cells expressing Hiwi, whereas that of pro-apoptotic proteins, Bax, activated caspase-3, -9, and cleaved poly (ADP-ribose) polymerase were increased. Additionally, Hiwi upregulation enhanced the chemosensitivity of CML cells to daunomycin. Our study illustrates that expression deletion of Hiwi may be involved in the pathogenesis of human CML and suggests a possible role of Hiwi in regulating the cell growth, cell cycle, and apoptosis of CML cells in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hamad, A., Sahli, Z., El Sabban, M., Mouteirik, M., & Nasr, R. (2013). Emerging therapeutic strategies for targeting chronic myeloid leukemia stem cells. Stem Cells International, 2013(2012), 724360.

    PubMed Central  PubMed  Google Scholar 

  2. Stapnes, C., Gjertsen, B. T., Reikvam, H., & Bruserud, O. (2009). Targeted therapy in acute myeloid leukaemia: Current status and future directions. Expert Opinion on Investigational Drugs, 18(4), 433–455.

    Article  CAS  PubMed  Google Scholar 

  3. Ito, T. (2013). Stem cell maintenance and disease progression in chronic myeloid leukemia. International Journal of Hematology, 98(6), 641–647.

    Article  CAS  PubMed  Google Scholar 

  4. Cross, N. C., Daley, G. Q., Green, A. R., Hughes, T. P., Jamieson, C., Manley, P., et al. (2008). BCR-ABL1-positive CML and BCR-ABL1-negative chronic myeloproliferative disorders: Some common and contrasting features. Leukemia, 22(11), 1975–1989.

    Article  CAS  PubMed  Google Scholar 

  5. Perrotti, D., Jamieson, C., Goldman, J., & Skorski, T. (2010). Chronic myeloid leukemia: Mechanisms of blastic transformation. The Journal of Clinical Investigation, 120(7), 2254–2264.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. el-Shami, K., & Smith, B. D. (2008). Immunotherapy for myeloid leukemias: Current status and future directions. Leukemia, 22(9), 1658–1664.

    Article  CAS  PubMed  Google Scholar 

  7. Cea, M., Cagnetta, A., Nencioni, A., Gobbi, M., & Patrone, F. (2013). New insights into biology of chronic myeloid leukemia: Implications in therapy. Current Cancer Drug Targets, 13(7), 711–723.

    Article  CAS  PubMed  Google Scholar 

  8. Cox, D. N., Chao, A., Baker, J., Chang, L., Qiao, D., & Lin, H. (1998). A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes & Development, 12(23), 3715–3727.

    Article  CAS  Google Scholar 

  9. Siomi, M. C., Sato, K., Pezic, D., & Aravin, A. A. (2011). PIWI-interacting small RNAs: The vanguard of genome defence. Nature Reviews Molecular Cell Biology, 12(4), 246–258.

    Article  CAS  PubMed  Google Scholar 

  10. Qiao, D., Zeeman, A. M., Deng, W., Looijenga, L. H., & Lin, H. (2002). Molecular characterization of hiwi, a human member of the piwi gene family whose overexpression is correlated to seminomas. Oncogene, 21(25), 3988–3999.

    Article  CAS  PubMed  Google Scholar 

  11. Taubert, H., Greither, T., Kaushal, D., Wurl, P., Bache, M., Bartel, F., et al. (2007). Expression of the stem cell self-renewal gene Hiwi and risk of tumour-related death in patients with soft-tissue sarcoma. Oncogene, 26(7), 1098–1100.

    Article  CAS  PubMed  Google Scholar 

  12. Yang, L. J., Chen, Y., Ma, Q., Fang, J., He, J., Cheng, Y. Q., & Wu, Q. L. (2010). Effect of betulinic acid on the regulation of Hiwi and cyclin B1 in human gastric adenocarcinoma AGS cells. Acta Pharmacologica Sinica, 31(1), 66–72.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Grochola, L. F., Greither, T., Taubert, H., Moller, P., Knippschild, U., Udelnow, A., et al. (2008). The stem cell-associated Hiwi gene in human adenocarcinoma of the pancreas: Expression and risk of tumour-related death. British Journal of Cancer, 99(7), 1083–1088.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Wang, D. W., Wang, Z. H., Wang, L. L., Song, Y., & Zhang, G. Z. (2014). Overexpression of hiwi promotes growth of human breast cancer cells. Asian Pacific Journal of Cancer Prevention, 15(18), 7553–7558.

    Article  PubMed  Google Scholar 

  15. Liu, W., Gao, Q., Chen, K., Xue, X., Li, M., Chen, Q., et al. (2014). Hiwi facilitates chemoresistance as a cancer stem cell marker in cervical cancer. Oncology Reports, 32(5), 1853–1860.

    CAS  PubMed  Google Scholar 

  16. Wang, X., Tong, X., Gao, H., Yan, X., Xu, X., Sun, S., et al. (2014). Silencing HIWI suppresses the growth, invasion and migration of glioma cells. International Journal of Oncology, 45(6), 2385–2392.

    CAS  PubMed  Google Scholar 

  17. Liang, D., Fang, Z., Dong, M., Liang, C., Xing, C., Zhao, J., & Yang, Y. (2012). Effect of RNA interference-related HiWi gene expression on the proliferation and apoptosis of lung cancer stem cells. Oncology Letters, 4(1), 146–150.

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Sharma, A. K., Nelson, M. C., Brandt, J. E., Wessman, M., Mahmud, N., Weller, K. P., & Hoffman, R. (2001). Human CD34(+) stem cells express the hiwi gene, a human homologue of the Drosophila gene piwi. Blood, 97(2), 426–434.

    Article  CAS  PubMed  Google Scholar 

  19. He, R., Liu, B., Yang, C., Yang, R. C., Tobelem, G., & Han, Z. C. (2003). Inhibition of K562 leukemia angiogenesis and growth by expression of antisense vascular endothelial growth factor (VEGF) sequence. Cancer Gene Therapy, 10(12), 879–886.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, J. H., Liu, L. Q., He, Y. L., Kong, W. J., & Huang, S. A. (2010). Cytotoxic effect of trans-cinnamaldehyde on human leukemia K562 cells. Acta Pharmacologica Sinica, 31(7), 861–866.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Siddiqi, S., Terry, M., & Matushansky, I. (2012). Hiwi mediated tumorigenesis is associated with DNA hypermethylation. PLoS ONE, 7(3), e33711.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Liang, D., Dong, M., Hu, L. J., Fang, Z. H., Xu, X., Shi, E. H., & Yang, Y. J. (2013). Hiwi knockdown inhibits the growth of lung cancer in nude mice. Asian Pacific Journal of Cancer Prevention, 14(2), 1067–1072.

    Article  PubMed  Google Scholar 

  23. Wu, Q., Ma, Q., Shehadeh, L. A., Wilson, A., Xia, L., Yu, H., & Webster, K. A. (2010). Expression of the Argonaute protein PiwiL2 and piRNAs in adult mouse mesenchymal stem cells. Biochemical and Biophysical Research Communications, 396(4), 915–920.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Kitada, S., Pedersen, I. M., Schimmer, A. D., & Re, J. C. (2002). Dysregulation of apoptosis genes in hematopoietic malignancies. Oncogene, 21(21), 3459–3474.

    Article  CAS  PubMed  Google Scholar 

  25. Wong, R. S. (2011). Apoptosis in cancer: From pathogenesis to treatment. Journal of Experimental and Clinical Cancer Research, 30(1), 87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Schmitt, E., Steyaert, A., Cimoli, G., & Bertrand, R. (1998). Bax-alpha promotes apoptosis induced by cancer chemotherapy and accelerates the activation of caspase 3-like cysteine proteases in p53 double mutant B lymphoma Namalwa cells. Cell Death and Differentiation, 5(6), 506–516.

    Article  CAS  PubMed  Google Scholar 

  27. Li, Z., Zhao, J., Li, Q., Yang, W., Song, Q., Li, W., & Liu, J. (2010). KLF4 promotes hydrogen-peroxide-induced apoptosis of chronic myeloid leukemia cells involving the bcl-2/bax pathway. Cell Stress and Chaperones, 15(6), 905–912.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Rao, J., Xu, D. R., Zheng, F. M., Long, Z. J., Huang, S. S., Wu, X., et al. (2011). Curcumin reduces expression of Bcl-2, leading to apoptosis in daunorubicin-insensitive CD34+ acute myeloid leukemia cell lines and primary sorted CD34+ acute myeloid leukemia cells. Journal of Translational Medicine, 9(1), 71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Kaufmann, S. H., & Earnshaw, W. C. (2000). Induction of apoptosis by cancer chemotherapy. Experimental Cell Research, 256(1), 42–49.

    Article  CAS  PubMed  Google Scholar 

  30. Hess, F., Estrugo, D., Fischer, A., Belka, C., & Cordes, N. (2007). Integrin-linked kinase interacts with caspase-9 and -8 in an adhesion-dependent manner for promoting radiation-induced apoptosis in human leukemia cells. Oncogene, 26, 1372–1384.

    Article  CAS  PubMed  Google Scholar 

  31. Wunderlich, M., Mizukawa, B., Chou, F. S., Sexton, C., Shrestha, M., Saunthararajah, Y., & Mulloy, J. C. (2013). AML cells are differentially sensitive to chemotherapy treatment in a human xenograft model. Blood, 121(12), e90–e97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Bhamidipati, P. K., Kantarjian, H., Cortes, J., Cornelison, A. M., & Jabbour, E. (2013). Management of imatinib-resistant patients with chronic myeloid leukemia. Therapeutic Advances in Hematology, 4(2), 103–117.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Rumjanek, V. M., Vidal, R. S., & Maia, R. C. (2013). Multidrug resistance in chronic myeloid leukaemia: How much can we learn from MDR-CML cell lines? Bioscience Reports, 33, 875–888.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant from the Foundation of Department of Science and Technology, Jilin Province (No.: 200705181).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziling Liu.

Additional information

Yalin Wang and Yan Jiang have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Jiang, Y., Bian, C. et al. Overexpression of Hiwi Inhibits the Cell Growth of Chronic Myeloid Leukemia K562 Cells and Enhances Their Chemosensitivity to Daunomycin. Cell Biochem Biophys 73, 129–135 (2015). https://doi.org/10.1007/s12013-015-0668-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-015-0668-7

Keywords

Navigation