Skip to main content
Log in

Curcumin Mediates a Protective Effect Via TLR-4/NF-κB Signaling Pathway in Rat Model of Severe Acute Pancreatitis

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Severe acute pancreatitis (SAP) is a common acute abdominal disease. This study was designed to investigate the preventive effects of curcumin on SAP and its possible mechanism of action. We observed increased volume of ascites, serum AMY, IL-6, and TNF-α levels, and expression of TLR-4 and NF-κB mRNA and protein in a rat model of SAP. Application of curcumin resulted in lower ascites volume and serum AMY. The levels of serum cytokines IL-10 and TNF-α were also significantly reduced after curcumin treatment, as evident from ELISA analysis. RT-PCR analysis showed down-regulation of TLR4 and NF-κB expressions as a function of curcumin treatment. Our results demonstrate the protective effect of curcumin in a rat model of SAP via the involvement of TLR-4/NF-κB signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Phillip, V., Steiner, J. M., & Algul, H. (2014). Early phase of acute pancreatitis: Assessment and management. World Journal of Gastrointestinal Pathophysiology, 5(3), 158–168.

    PubMed Central  PubMed  Google Scholar 

  2. da Costa, D. W., et al. (2014). Staged multidisciplinary step-up management for necrotizing pancreatitis. British Journal of Surgery, 101(1), e65–e79.

    Article  PubMed  Google Scholar 

  3. Kota, S. K., et al. (2013). Metabolic pancreatitis: Etiopathogenesis and management. Indian Journal of Endocrinology Metabolism, 17(5), 799–805.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Closa, D. (2013). Free radicals and acute pancreatitis: Much ado about… something. Free Radical Research, 47(11), 934–940.

    Article  CAS  PubMed  Google Scholar 

  5. Waldthaler, A., Schutte, K., & Malfertheiner, P. (2010). Causes and mechanisms in acute pancreatitis. Digestive Diseases, 28(2), 364–372.

    Article  CAS  PubMed  Google Scholar 

  6. Armstrong, J. A., et al. (2013). Oxidative stress in acute pancreatitis: lost in translation? Free Radical Research, 47(11), 917–933.

    Article  CAS  PubMed  Google Scholar 

  7. Escobar, J., et al. (2009). Cross-talk between oxidative stress and pro-inflammatory cytokines in acute pancreatitis: A key role for protein phosphatases. Current Pharmaceutical Design, 15(26), 3027–3042.

    Article  CAS  PubMed  Google Scholar 

  8. Fisic, E., et al. (2013). The role of IL-6, 8, and 10, sTNFr, CRP, and pancreatic elastase in the prediction of systemic complications in patients with acute pancreatitis. Gastroenterology Research Practice, 2013, 282645.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Khanna, A. K., et al. (2013). Comparison of Ranson, Glasgow, MOSS, SIRS, BISAP, APACHE-II, CTSI Scores, IL-6, CRP, and Procalcitonin in predicting severity, organ failure, pancreatic necrosis, and mortality in acute pancreatitis. HPB Surgery, 2013, 367581.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Gasparovic, V., et al. (2014). Severe acute pancreatitis as a part of multiple dysfunction syndrome. Collegium Antropologicum, 38(1), 125–128.

    PubMed  Google Scholar 

  11. Barak, B., Feldman, N., & Okun, E. (2014). Toll-like receptors as developmental tools that regulate neurogenesis during development: An update. Frontiers in Neuroscience, 8, 272.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Liu, X., et al. (2014). The relationship between SNPs in the genes of TLR signal transduction pathway downstream elements and rheumatoid arthritis susceptibility. Tsitologiia i Genetika, 48(3), 24–29.

    CAS  PubMed  Google Scholar 

  13. Murad, S. (2014). Toll-like receptor 4 in inflammation and angiogenesis: a double-edged sword. Frontiers in Immunology, 5, 313.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Xu, Y., et al. (2014). oxLDL/beta2GPI/anti-beta2GPI complex induced macrophage differentiation to foam cell involving TLR4/NF-kappa B signal transduction pathway. Thrombosis Research, 134(2), 384–392.

    Article  CAS  PubMed  Google Scholar 

  15. Wullaert, A., Bonnet, M. C., & Pasparakis, M. (2011). NF-kappaB in the regulation of epithelial homeostasis and inflammation. Cell Research, 21(1), 146–158.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Ghosh, G., et al. (2012). NF-kappaB regulation: Lessons from structures. Immunological Reviews, 246(1), 36–58.

    Article  PubMed  Google Scholar 

  17. Zhang, Y., et al. (2014). Activation of vascular endothelial growth factor receptor-3 in macrophages restrains TLR4-NF-kappaB signaling and protects against endotoxin shock. Immunity, 40(4), 501–514.

    Article  PubMed  Google Scholar 

  18. Xiping, Z., et al. (2009). Effects of Salvia miltiorrhizae on ICAM-1, TLR4, NF-kappaB and Bax proteins expression in multiple organs of rats with severe acute pancreatitis or obstructive jaundice. Inflammation, 32(4), 218–232.

    Article  PubMed  Google Scholar 

  19. Lestari, M. L., & Indrayanto, G. (2014). Curcumin. Profiles of Drug Substances, Excipients and Related Methodology, 39, 113–204.

    Article  CAS  Google Scholar 

  20. Lu, X., et al. (2014). The effect of Chinese herbal medicine on non-biliogenic severe acute pancreatitis: A systematic review and meta-analysis. Journal of Ethnopharmacology, 155(1), 21–29.

    Article  PubMed  Google Scholar 

  21. Jurenka, J. S. (2009). Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: A review of preclinical and clinical research. Alternative Medicine Review, 14(2), 141–153.

    PubMed  Google Scholar 

  22. Bienvenu, J., et al. (1993). Analytical performances of commercial ELISA-kits for IL-2, IL-6 and TNF-alpha. A WHO study. European Cytokine Network, 4(6), 447–451.

    CAS  PubMed  Google Scholar 

  23. Vaure, C., & Liu, Y. (2014). A comparative review of toll-like receptor 4 expression and functionality in different animal species. Frontiers in Immunology, 5, 316.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Zhao, H., et al. (2014). Role of Toll-like receptor-4 in renal graft ischemia-reperfusion injury. Am Journal of Physiology Renal Physiology, 306(8), F801–F811.

    Article  CAS  Google Scholar 

  25. Lien, E., & Ingalls, R. R. (2002). Toll-like receptors. Critical Care Medicine, 30(1 Suppl), S1–S11.

    Article  CAS  Google Scholar 

  26. Cohen-Sfady, M., et al. (2005). Heat shock protein 60 activates B cells via the TLR4-MyD88 pathway. Journal of Immunology, 175(6), 3594–3602.

    Article  CAS  Google Scholar 

  27. Zhai, Y., et al. (2004). Cutting edge: TLR4 activation mediates liver ischemia/reperfusion inflammatory response via IFN regulatory factor 3-dependent MyD88-independent pathway. Journal of Immunology, 173(12), 7115–7119.

    Article  CAS  Google Scholar 

  28. Beutler, B., et al. (2006). Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large. Annual Review of Immunology, 24, 353–389.

    Article  CAS  PubMed  Google Scholar 

  29. Doyle, S. L., Jefferies, C. A., & O’Neill, L. A. (2005). Bruton’s tyrosine kinase is involved in p65-mediated transactivation and phosphorylation of p65 on serine 536 during NFkappaB activation by lipopolysaccharide. Journal of Biological Chemistry, 280(25), 23496–23501.

    Article  CAS  PubMed  Google Scholar 

  30. Gukovsky, I., et al. (2003). Curcumin ameliorates ethanol and nonethanol experimental pancreatitis. American Journal of Physiology. Gastrointestinal and Liver Physiology, 284(1), G85–G95.

    Article  CAS  PubMed  Google Scholar 

  31. Wang, X., et al. (2003). Gastrointestinal dysmotility in patients with acute pancreatitis. Journal of Gastroenterology and Hepatology, 18(1), 57–62.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, K. Curcumin Mediates a Protective Effect Via TLR-4/NF-κB Signaling Pathway in Rat Model of Severe Acute Pancreatitis. Cell Biochem Biophys 73, 175–180 (2015). https://doi.org/10.1007/s12013-015-0664-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-015-0664-y

Keywords

Navigation