Skip to main content
Log in

Influence of Regional Difference in Bone Mineral Density on Hip Fracture Site in Elderly Females by Finite Element Analysis

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Hip fracture is a kind of osteoporotic fractures in elderly patients. Its important monitoring indicator is to measure bone mineral density (BMD) using DXA. The stress characteristics and material distribution in different parts of the bones can be well simulated by three-dimensional finite element analysis. Our previous studies have demonstrated a linear positive correlation between clinical BMD and the density of three-dimensional finite element model of the femur. However, the correlation between the density variation between intertrochanteric region and collum femoris region of the model and the fracture site has not been studied yet. The present study intends to investigate whether the regional difference in the density of three-dimensional finite element model of the femur can be used to predict hip fracture site in elderly females. The CT data of both hip joints were collected from 16 cases of elderly female patients with hip fractures. Mimics 15.01 software was used to reconstruct the model of proximal femur on the healthy side. Ten kinds of material properties were assigned. In Abaqus 6.12 software, the collum femoris region and intertrochanteric region were, respectively, drawn for calculating the corresponding regional density of the model, followed by prediction of hip fracture site and final comparison with factual fracture site. The intertrochanteric region/collum femoris region density was [(1.20 ± 0.02) × 106] on the fracture site and [(1.22 ± 0.03) × 106] on the non-fracture site, and the difference was statistically significant (P = 0.03). Among 16 established models of proximal femur on the healthy side, 14 models were consistent with the actual fracture sites, one model was inconsistent, and one model was unpredictable, with the coincidence rate of 87.5 %. The intertrochanteric region or collum femoris region with lower BMD is more prone to hip fracture of the type on the corresponding site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gullberg, B., Johnell, O., & Kanis, J. A. (1997). World-wide projections for hip fracture. Osteoporosis International, 7(5), 407–413.

    Article  CAS  PubMed  Google Scholar 

  2. Keene, G. S., Parker, M. J., & Pryor, G. A. (1993). Mortality and morbidity after hip fractures. BMJ, 307(6914), 1248–1250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Braithwaite, R. S., Col, N. F., & Wong, J. B. (2003). Estimating hip fracture morbidity, mortality and costs. Journal of the American Geriatrics Society, 51(3), 364–370.

    Article  PubMed  Google Scholar 

  4. Koivumäki, J. E. M., Thevenot, J., Pulkkinen, P., Kuhn, V., Link, T. M., Eckstein, F., & Jämsä, T. (2012). Ct-based finite element models can be used to estimate experimentally measured failure loads in the proximal femur. Bone, 50(4), 824–829.

    Article  PubMed  Google Scholar 

  5. Van den Munckhof, S., & Zadpoor, A. A. (2014). How accurately can we predict the fracture load of the proximal femur using finite element models? Clinical Biomechanics, 29(4), 373–380. (Bristol, Avon).

    Article  PubMed  Google Scholar 

  6. Schileo, E., Balistreri, L., Grassi, L., Cristofolini, L., & Taddei, F. (2014). To what extent can linear finite element models of human femora predict failure under stance and fall loading configurations? Journal of Biomechanics, 47, 3584–3589. pii: S0021-9290(14)00460-6.

    Article  Google Scholar 

  7. Body, J. J. (2011). How to manage postmenopausal osteoporosis? Acta Clinica Belgica, 66(6), 443–447.

    CAS  PubMed  Google Scholar 

  8. Jade, S., Tamvada, K. H., Strait, D. S., & Grosse, I. R. (2014). Finite element analysis of a femur to deconstruct the paradox of bone curvature. Journal of Theoretical Biology, 21(341), 53–63.

    Article  Google Scholar 

  9. Liu, C. C., Xing, W. Z., Zhang, Y. X., Pan, Z. H., & Feng, W. L. (2014). Three-dimensional finite element analysis and comparison of a new intramedullary fixation with interlocking intramedullary nail. Cell biochemistry and biophysics.

  10. Keyak, J. H., Rossi, S. A., Jones, K. A., Les, C. M., & Skinner, H. B. (2001). Prediction of fracture location in the proximal femur using finite element models. Medical Engineering & Physics, 23(9), 657–664.

    Article  CAS  Google Scholar 

  11. Lefauveau, P., & FardeIlone, P. (2004). Extraskeletal risk factors for fractures of the proximal femur. Joint Bone Spine, 71(1), 14–17.

    Article  PubMed  Google Scholar 

  12. Wachter, N. J., Augat, P., Hoellen, I. P., Krischak, G. D., Sarkar, M. R., Mentzel, M., et al. (2001). Predictive value of Singh index and bone mineral density measured by quantitative computed tomography in determining the local cancellous bone quality of the proximal femur. Clinical Biomechanics, 16(3), 257–262. (Bristol, Avon).

    Article  CAS  PubMed  Google Scholar 

  13. Lotz, J. C., Cheal, E. J., & Hayes, W. C. (1991). Fracture prediction for the proximal femur using finite element models: Part I: Linear analysis. Journal of Biomechanical Engineering, 113(4), 353–360.

    Article  CAS  PubMed  Google Scholar 

  14. Cauley, J. A., Lui, L.-Y., Genant, H. K., & Salamone, L. (2009). Risk factors for severity and type of the hip fracture. Journal of Bone and Mineral Research, 24, 943–955.

    Article  PubMed  Google Scholar 

  15. Homminga, J., Weinans, H., Gowin, W., et al. (2001). Osteoporosis changes the amount of vertebral trabecular bone at risk of fracture but not the vertebral load distribution. Spine, 26(14), 1555–1561.

    Article  CAS  PubMed  Google Scholar 

  16. Crawford, R. P., Cann, C. E., Keaveny, T. M., et al. (2003). Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone, 33(4), 744–750.

    Article  PubMed  Google Scholar 

  17. Taylor, W. R., Roland, E., Ploeg, H., et al. (2002). Determination of orthotropic bone elastic constants using FEA and modal analysis. Journal of Biomechanics, 35(6), 767–773.

    Article  CAS  PubMed  Google Scholar 

  18. Campoli, G., Baka, N., Kaptein, B. L., Valstar, E. R., Zachow, S., Weinans, H., & Zadpoor, A. A. (2014). Relationship between the shape and density distribution of the femur and its natural frequencies of vibration. Journal of biomechanics, 47(13), 3334–3343.

    Article  CAS  PubMed  Google Scholar 

  19. Larrosa, M., Gomez, A., Casado, E., Moreno, M., Vázquez, I., Orellana, C., et al. (2012). Hypovitaminosis D as a risk factor of hip fracture severity. Osteoporosis International, 23(2), 607–614.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The present study is supported by the fund of Guangdong Provincial Science and Technology Planning Project (No.: KFC110122K08). All used software are provided by Orthopaedic and Traumatology of Traditional Chinese Medicine, a National Key Discipline Laboratory of Guangzhou University of Traditional Chinese Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. L. Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z.L., Li, P.F., Pang, Z.H. et al. Influence of Regional Difference in Bone Mineral Density on Hip Fracture Site in Elderly Females by Finite Element Analysis. Cell Biochem Biophys 73, 405–412 (2015). https://doi.org/10.1007/s12013-015-0650-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-015-0650-4

Keywords

Navigation