Skip to main content
Log in

Detection of Vulnerable Atherosclerotic Plaques in Experimental Atherosclerosis with the USPIO-Enhanced MRI

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

This study’s goal was to assess the diagnostic value of the USPIO-(ultra-small superparamagnetic iron oxide) enhanced magnetic resonance imaging (MRI) in detection of vulnerable atherosclerotic plaques in abdominal aorta in experimental atherosclerosis. Thirty New Zealand rabbits were randomly divided into two groups, Group A and Group B. Each group comprised 15 animals which were fed with high cholesterol diet for 8 weeks and then subjected to balloon-induced endothelial injury of the abdominal aorta. After another 8 weeks, animals in Group B received adenovirus carrying p53 gene that was injected through a catheter into the aortic segments rich in plaques. Two weeks later, all rabbits were challenged with the injection of Chinese Russell’s viper venom and histamine. Pre-contrast images and USPIO-enhanced MRI images were obtained after pharmacological triggering with injection of USPIO for 5 days. Blood specimens were taken for biochemical and serological tests at 0 and 18 weeks. Abdominal aorta was histologically studied. The levels of serum ICAM-1 and VCAM-1 were quantified by ELISA. Vulnerable plaques appeared as a local hypo-intense signal on the USPIO-enhanced MRI, especially on T2*-weighted sequences. The signal strength of plaques reached the peak at 96 h. Lipid levels were significantly (p < 0.05) higher in both Group A and B compared with the levels before the high cholesterol diet. The ICAM-1 and VCAM-1 levels were significantly (p < 0.05) higher in Group B compared with Group A. The USPIO-enhanced MRI efficiently identifies vulnerable plaques due to accumulation of USPIO within macrophages in abdominal aorta plaques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

USPIO:

Ultra-small superparamagnetic iron oxide

MRI:

Magnetic resonance imaging

T2*WI:

T2*-weighted imaging

T1WI:

T1-weighted imaging

T2WI:

T2-weighted imaging

PDWI:

Proton density weighted imaging

ICAM-1:

Intercellular adhesion molecule-1

VCAM-1:

Vascular cell adhesion molecule-1

ACS:

Acute coronary syndrome

SNR:

Signal to noise ratio

SI:

Signal interesting

SD:

Standard deviation

ANOVA:

Analysis of variance

FSE:

Fast spin echo

TR:

Repetition time

TE:

Echo time

FA:

Flip angle

STIR:

Short time inversion recovery

FFE:

Fast field echo

TC:

Total cholesterols

TG:

Triglycerides

LDL-C:

Low density lipoprotein-cholesterol

HDL-C:

High density lipoprotein-cholesterol

ELISA:

Enzyme-linked immunosorbent assay

SGM:

Susceptibility gradient mapping

VSOP:

Very small iron oxide particle

References

  1. Fishbein, M. C. (2010). The vulnerable and unstable atherosclerotic plaque. Cardiovascular Pathology, 2010(19), 6–11.

    Article  Google Scholar 

  2. Mizuno, Y., Jacob, R. F., & Mason, R. P. (2011). Inflammation and the development of atherosclerosis. Journal of Atherosclerosis and Thrombosis, 18, 351–358.

    Article  CAS  PubMed  Google Scholar 

  3. Nguyen, C. M., & Levy, A. J. (2010). The mechanics of atherosclerotic plaque rupture by inclusion/matrix interfacial decohesion. Journal of Biomechanics, 2010(43), 2702–2708.

    Article  Google Scholar 

  4. Bond, A. R., & Jackson, C. L. (2011). The fat-fed apolipoprotein E knockout mouse brachiocephalic artery in the study of atherosclerotic plaque rupture. Journal of Biomedicine and Biotechnology, 2011(2011), 379069.

    PubMed  Google Scholar 

  5. Guagliumi, G., Musumeci, G., Pierli, C., Fineschi, M., & Musuraca, A. C. (2010). Imaging of vulnerable plaque. Giornale Italiano Cardiologia (Rome), 11, 16s–21s.

    Google Scholar 

  6. Falk, E., Shah, P. K., & Fuster, V. (1995). Coronary plaque disruption. Circulation, 92, 657–671.

    Article  CAS  PubMed  Google Scholar 

  7. Naghavi, M., Libby, P., Falk, E., Casscells, S. W., Litovsky, S., Rumberger, J., et al. (2003). From vulnerable plaque to vulnerable patient: A call for new definitions and risk assessment strategies: Part I. Circulation, 2003(108), 1664–1672.

    Article  Google Scholar 

  8. Fleiner, M., Kummer, M., Mirlacher, M., Sauter, G., Cathomas, G., Krapf, R., & Biedermann, B. C. (2004). Arterial neovascularization and inflammation in vulnerable patients: Early and late signs of symptomatic atherosclerosis. Circulation, 110, 2843–2850.

    Article  PubMed  Google Scholar 

  9. Staub, D., Schinkel, A. F., Coll, B., Coli, S., van der Steen, A. F., Reed, J. D., et al. (2010). Contrast-enhanced ultrasound imaging of the vasa vasorum: From early atherosclerosis to the identification of unstable plaques. JACC Cardiovascular Imaging., 3, 761–771.

    Article  PubMed  Google Scholar 

  10. Skotland, T. (2012). Molecular imaging: Challenges of bringing imaging of intracellular targets into common clinical use. Contrast Media & Molecular Imaging, 7, 1–6.

    Article  CAS  Google Scholar 

  11. Nemoto, S. (2011). Diagnostic imaging of carotid stenosis: Ultrasound, magnetic resonance imaging, and computed tomography angiography. Nihon Geka Gakkai Zasshi, 112, 371–376. In Japanese.

    PubMed  Google Scholar 

  12. Gao, T., He, X., Yu, W., Zhang, Z., & Wang, Y. (2011). Atherosclerotic plaque pathohistology and classification with high-resolution MRI. Neurological Research, 33, 325–330.

    Article  PubMed  Google Scholar 

  13. Ross, R. (1999). Atherosclerosis—an inflammatory disease. New England Journal of Medicine, 340, 115–126.

    Article  CAS  PubMed  Google Scholar 

  14. Tang, T., Howarth, S. P., Miller, S. R., Trivedi, R., Graves, M. J., King-Im, J. U., et al. (2006). Assessment of inflammatory burden contralateral to the symptomatic carotid stenosis using high-resolution ultrasmall, superparamagnetic iron oxide-enhanced MRI. Stroke, 37, 2266–2270.

    Article  CAS  PubMed  Google Scholar 

  15. Howarth, S. P., Tang, T. Y., Graves, M. J., U-King-Im, J. M., Li, Z. Y., Walsh, S. R., et al. (2007). Non-invasive MR imaging of inflammation in a patient with both asymptomatic carotid atheroma and an abdominal aortic aneurysm: a case report. Annals of Surgical Innovation and Research, 1, 4.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Metz, S., Beer, A. J., Settles, M., Pelisek, J., Botnar, R. M., Rummeny, E. J., & Heider, P. (2011). Characterization of carotid artery plaques with USPIO-enhanced MRI: Assessment of inflammation and vascularity as in vivo imaging biomarkers for plaque vulnerability. International Journal of Cardiovascular Imaging, 27, 901–912.

    Article  PubMed  Google Scholar 

  17. Institutional Animal Care and Use Committee. (2011). Guide for the care and use of laboratory animals. Washington, D.C: The National Academies Press.

    Google Scholar 

  18. Constantinides, P., & Chakravarti, R. N. (1961). Rabbit arterial thrombosis production by systemic procedures. Archives of Pathology, 72, 197–208.

    CAS  PubMed  Google Scholar 

  19. Chen, W. Q., Zhang, L., Liu, Y. F., Chen, L., Ji, X. P., Zhang, M., et al. (2007). Prediction of atherosclerotic plaque ruptures with high-frequency ultrasound imaging and serum inflammatory markers. American Journal of Physiology Heart and Circulatory Physiology, 293, H2836–H2844.

    Article  CAS  PubMed  Google Scholar 

  20. Yonemitsu, Y., Kaneda, Y., Tanaka, S., Nakashima, Y., Komori, K., Sugimachi, K., & Sueishi, K. (1998). Transfer of wild-type p53 gene effectively inhibits vascular smooth muscle cell proliferation in vitro and in vivo. Circulation Research, 82, 147–156.

    Article  CAS  PubMed  Google Scholar 

  21. Saam, T., Hatsukami, T. S., Takaya, N., Chu, B., Underhill, H., Kerwin, W. S., et al. (2007). The vulnerable, or high-risk, atherosclerotic plaque: noninvasive MR imaging for characterization and assessment. Radiology, 244, 64–77.

    Article  PubMed  Google Scholar 

  22. Trivedi, R. A., Mallawarachi, C., U-King-Im, J. M., Graves, M. J., Horsley, J., Goddard, M. J., et al. (2006). Identifying inflamed carotid plaques using in vivo USPIO-enhanced MR imaging to label plaque macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 1601–1606.

    Article  CAS  PubMed  Google Scholar 

  23. Zhou, Q., Yang, K. R., Gao, P., Chen, W. L., Yang, D. Y., Liang, M. J., & Zhu, L. (2011). An experimental study on MR imaging of atherosclerotic plaque with SPIO marked endothelial cells in a rabbit model. Journal of Magnetic Resonance Imaging, 34, 1325–1332.

    Article  PubMed  Google Scholar 

  24. Makowski, M. R., Varma, G., Wiethoff, A. J., Smith, A., Mattock, K., Jansen, C. H., et al. (2011). Noninvasive assessment of atherosclerotic plaque progression in ApoE−/− mice using susceptibility gradient mapping. Circulation Cardiovascular Imaging, 4, 295–303.

    Article  PubMed  Google Scholar 

  25. Clarke, S. E., Beletsky, V., Hammond, R. R., Hegele, R. A., & Rutt, B. K. (2006). Validation of automatically classified magnetic resonance images for carotid plaque compositional analysis. Stroke, 37, 93–97.

    Article  PubMed  Google Scholar 

  26. Kooi, M. E., Cappendijk, V. C., Cleutjens, K. B., Kessels, A. G., Kitslaar, P. J., Borgers, M., et al. (2003). Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation, 107, 2453–2458.

    Article  CAS  PubMed  Google Scholar 

  27. Trivedi, R. A., U-King-Im, J. M., Graves, M. J., Cross, J. J., Horsley, J., Goddard, M. J., et al. (2004). In vivo detection of macrophages in human carotid atheroma: temporal dependence of ultrasmall superparamagnetic particles of iron oxide-enhanced MRI. Stroke, 35, 1631–1635.

    Article  PubMed  Google Scholar 

  28. Tabas, I., Williams, K. J., & Boren, J. (2007). Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation, 116, 1832–1844.

    Article  CAS  PubMed  Google Scholar 

  29. Moreno, P. R., Falk, E., Palacios, I. F., Newell, J. B., Fuster, V., & Fallon, J. T. (1994). Macrophage infiltration in acute coronary syndromes. Implications for plaque rupture. Circulation, 90, 775–778.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the grants for postdoctoral studies (No. 53431002 and China Postdoctoral Science Foundation No. 2012M512177) and Xuzhou Scientific Technology Grant (Nos. XF11C103 and XM13B047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-mei Qi.

Additional information

Chun-mei Qi, Lili Du and Ji Hao have contributed equally to this work and should be consider co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Cm., Du, L., Wu, Wh. et al. Detection of Vulnerable Atherosclerotic Plaques in Experimental Atherosclerosis with the USPIO-Enhanced MRI. Cell Biochem Biophys 73, 331–337 (2015). https://doi.org/10.1007/s12013-015-0591-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-015-0591-y

Keywords

Navigation