Skip to main content
Log in

GJB2 as Well as SLC26A4 Gene Mutations are Prominent Causes for Congenital Deafness

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Mutations in gap junction proteins encoding beta connexions are believed to be a major cause for congenital hearing loss. The purpose of this study was to do comparative analyses of frequencies of most prominent mutations responsible for congenital deafness. Using fluorescence PCR method, the entire coding region of GJB2 gene, GJB3 gene, and SLC26A4 was analyzed. Direct DNA sequencing was used to analyze mutations in these genes among unrelated 2,674 cases of newborns. Also, 12S rRNA mutation was also studied in these cases. In 2,674 cases of newborns from June 2013 to June 2014, found deafness mutation in 137 cases (5.12 % of carrier rate), carrying GJB2 mutations in 68 cases (2.54 % of carry rate), GJB3 mutations in 10 cases (0.37 % of carry rate), SLC26A4 mutations in 54 cases (2.02 % of carry rate), and mitochondrial 12S rRNA mutations in five cases (0.19 % of carry rate). The study concludes that GJB2 gene mutation is the most common and mitochondrial 12S rRNA mutations are the least common mutation for congenital hearing loss in Chinese newborns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Snoeckx, R. L., Huygen, P. L., Feldmann, D., et al. (2005). GJB2 mutations and degree of hearing loss: A multicenter study. American Journal of Human Genetics, 77, 945–957.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Hilgert, N., Smith, R. J., & Van Camp, G. (2009). Forty-six genes causing nonsyndromic hearing impairment: Which ones should be analyzed in DNA diagnostics? Mutation Research, 681, 189–196.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Kenneson, A., Van Naarden Braun, K., & Boyle, C. (2002). GJB2 (connexin 26) variants and nonsyndromic sensorineural hearing loss: A HuGE review. Genetics in Medicine, 4, 258–274.

    Article  CAS  PubMed  Google Scholar 

  4. Xiao, Z. A., & Xie, D. H. (2004). GJB2 (Cx26) gene mutations in Chinese patients with congenital sensorineural deafness and a report of one novel mutation. Chinese Medical Journal, 117(12), 1797–1801.

    CAS  PubMed  Google Scholar 

  5. Bitner-Glindzicz, M. (2002). Hereditary deafness and phenotyping in humans. British Medical Bulletin, 63, 73–94.

    Article  CAS  PubMed  Google Scholar 

  6. Rabionet, R., Gasparini, P., Estivill, X. (2002) Connexins and deafness homepage. www.crg.es/deafness/.

  7. Bruzzone, R., White, T. W., & Paul, D. L. (1996). Connections with connexins: the molecular basis of direct intercellular signaling. European Journal of Biochemistry, 238, 1–27.

    Article  CAS  PubMed  Google Scholar 

  8. Harris, A. L., & Bevans, C. G. (2001). Exploring hemichannel permeability in vitro. Methods in Molecular Biology, 154, 357–377.

    CAS  PubMed  Google Scholar 

  9. Chang, E. H., van Camp, G., & Smith, R. J. (2003). The role of connexins in human disease. Ear and Hearing, 24, 314–323.

    Article  PubMed  Google Scholar 

  10. Kikuchi, T., Kimura, R. S., Paul, D. L., & Adams, J. C. (1995). Gap junctions in the rat cochlea: Immunohistochemical and ultrastructural analysis. Anatomy and embryology (Berl), 191, 101–118.

    Article  CAS  Google Scholar 

  11. Liu, X. Z., Xia, X. J., Xu, L. R., et al. (2000). Mutations in connexin31 underlie recessive as well as dominant non-syndromic hearing loss. Human molecular genetics, 9(1), 63–67.

    Article  CAS  PubMed  Google Scholar 

  12. Coucke, P., Van Camp, G., Djoyodiharjo, B., et al. (1994). Linkage of autosomal dominant hearing loss to the short arm of chromosome 1 in two families. New England Journal of Medicine, 331(7), 425–431.

    Article  CAS  PubMed  Google Scholar 

  13. Yuan, Y., Guo, W., Tang, J., Zhang, G., Wang, G., et al. (2012). Molecular epidemiology and functional assessment of novel allelic variants of SLC26A4 in non-syndromic hearing loss patients with enlarged vestibular aqueduct in China. PLoS One, 7(11), e49984. doi:10.1371/journal.pone.0049984.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Wangemann, P., Nakaya, K., Wu, T., Maganti, R. J., Itza, E. M., et al. (2007). Loss of cochlear HCO3- secretion causes deafness via endolymphatic acidification and inhibition of Ca2+ reabsorption in a Pendred syndrome mouse model. American Journal of Physiology-Renal Physiology, 292, F1345–F1353.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Campbell, C., Cucci, R. A., Prasad, S., Green, G. E., Edeal, J. B., et al. (2001). (2001) Pendred syndrome, DFNB4, and PDS/SLC26A4 identification of eight novel mutations and possible genotype-phenotype correlations. Human Mutation, 17, 403–441.

    Article  CAS  PubMed  Google Scholar 

  16. Lodish, H. F., Berk, A., Matsudaira, P., Kaiser, C. A., Krieger, M., Scott, M. P., et al. (2004). Molecular Cell Biology (5th ed., pp. 230–231). New York: W.H. Freeman and Company. ISBN 0-7167-4366-3.

    Google Scholar 

  17. Rabionet, R., Gasparini, P., & Estivilli, X. (2000). (2000) Molecular genetics of hearing impairment due to mutations in gap junctions genes encoding beta connexins. Huma. Mut, 16, 190–202.

    Article  CAS  Google Scholar 

  18. Oshima, A., Doi, T., Mitsuoka, K., Maeda, S., & Fujiyoshi, Y. (2003). Roles of Met-34, Cys-64, and Arg-75 in the assembly of human connexin 26: Implication for key amino acid residues for channel formation and function. Journal of Biological Chemistry, 278, 1807–1816.

    Article  CAS  PubMed  Google Scholar 

  19. Skerrett, I. M., Di, W. L., Kasperek, E. M., Kelsell, D. P., & Nicholson, B. J. (2004). Aberrant gating, but a normal expression pattern, underlies the recessive phenotype of the deafness mutant Connexin26M34T. The FASEB Journal, 18, 860–862.

    CAS  PubMed  Google Scholar 

  20. Beltramello, M., Piazza, V., Bukauskas, F. F., Pozzan, T., & Mammano, F. (2005). Impaired permeability to ins(1,4,5)p3 in a mutant connexin underlies recessive hereditary deafness. Nature Cell Biology, 7, 63–69.

    Article  CAS  PubMed  Google Scholar 

  21. Park, H. J., Shaukat, S., Liu, X. Z., Hahn, S. H., Naz, S., et al. (2003). Origins and frequencies of SLC26A4 (PDS) mutations in east and south Asians: global implications for the epidemiology of deafness. Journal of Medical Genetics, 40, 242–248.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Yoon, J. S., Park, H. J., Yoo, S. Y., Namkung, W., Jo, M. J., et al. (2008). Heterogeneity in the processing defect of SLC26A4 mutants. Journal of Medical Genetics, 45, 411–419.

    Article  CAS  PubMed  Google Scholar 

  23. Taylor, J. P., Metcalfe, R. A., Watson, P. F., Weetman, A. P., & Trembath, R. C. (2002). Mutations of the PDS gene, encoding pendrin, are associated with protein mislocalization and loss of iodide efflux: implications for thyroid dysfunction in Pendred syndrome. Journal of Clinical Endocrinology and Metabolism, 87, 1778–1784.

    Article  CAS  PubMed  Google Scholar 

  24. Choi, B. Y., Stewart, A. K., Madeo, A. C., Pryor, S. P., Lenhard, S., et al. (2009). Hypofunctional SLC26A4 variants associated with nonsyndromic hearing loss and enlargement of the vestibular aqueduct: genotype-phenotype correlation or coincidental polymorphisms? Human Mutation, 30, 599–608.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Dossena, S., Vezzoli, V., Cerutti, N., Bazzini, C., Tosco, M., et al. (2006). Functional characterization of wild-type and a mutated form of SLC26A4 identified in patient with Pendred syndrome. Cellular Physiology and Biochemistry, 17, 245–256.

    Article  CAS  PubMed  Google Scholar 

  26. Pera, A., Villamar, M., Vi˜nuela, A., Gand, M., et al. (2008). A mutational analysis of the SLC26A4 gene in Spanish hearing-impaired families provides new insights into the genetic causes of Pendred syndrome and DFNB4 hearing loss. European Journal of Human Genetics, 2008(16), 888–896.

    Article  Google Scholar 

  27. Lopez-Bigas, N., Olive, M., Rabionet, R., et al. (2001). Connexin 31 (GJB3) is expressed in the peripheral and auditory nerves and causes neuropathy and hearing impairment. Human molecular genetics, 10(9), 947–952.

    Article  CAS  PubMed  Google Scholar 

  28. Liu, X. Z., Xia, X. J., Xu, L. R., Pandya, A., Liang, C. Y., Blanton, S. H., et al. (2000). Mutations connexin31 underlie recessive as well as dominant non-syndromic hearing loss. Human Molecular Genetics, 9(1), 63–67.

    Article  CAS  PubMed  Google Scholar 

  29. Qinjun, Wei, Shuai, Wang, Jun, Yao, et al. (2013). Genetic mutations of GJB2 and mitochondrial 12S rRNA in nonsyndromic hearing loss in Jiangsu. Journal of Translational Medicine, 11, 163.

    Article  Google Scholar 

  30. Zhao, H., Young, W.-Y., Ya, Q., et al. (2005). Functional characterization of the mitochondrial 12S rRNA C1494T mutation associated with aminoglycoside-induced and non-syndromic hearing loss. Nucleic Acids Research, 33(3), 1132–1139.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangming Wang.

Additional information

Yuan Fang and Maosheng Gu have contributed equally to this study and should be considered co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Gu, M., Wang, C. et al. GJB2 as Well as SLC26A4 Gene Mutations are Prominent Causes for Congenital Deafness. Cell Biochem Biophys 73, 41–44 (2015). https://doi.org/10.1007/s12013-015-0562-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-015-0562-3

Keywords

Navigation