Skip to main content
Log in

Activated Human Hepatic Stellate Cells Promote Growth of Human Hepatocellular Carcinoma in a Subcutaneous Xenograft Nude Mouse Model

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Tumor cell microenvironment defines cancer development, also in hepatocellular carcinoma (HCC). Hepatic stellate cells (HSCs) are believed to be the key contributors to tumor microenvironment in HCC, yet their precise role in cancer progression is still unclear. The aim of this study was to determine the effect of human HSCs on progression of HCC using a subcutaneous xenograft nude mouse model. Nude mice were stratified to receive subcutaneous injections of human HCC cell line HepG2 and human HSC line LX-2 (HepG2 + LX-2), HepG2 alone, LX-2 alone, or phosphate-buffered saline. Tumor growth was assessed by measuring tumor size. After 30 days, final tumor size, weight, and histology were assessed. Compared with mice that were only injected HepG2 cells, mice injected with HepG2 + LX-2 exhibited more rapid tumor growth, increased tumor size and weight, higher tumor cell numbers due to increased proliferation and reduced apoptosis, increased fibrotic bands containing LX-2 cells, and increased tumor angiogenesis. In conclusion, HSCs play a significant role in promotion of HCC growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

HSCs:

Hepatic stellate cells

HCC:

Hepatocellular carcinoma

PCNA:

Proliferating cell nuclear antigen

References

  1. Ferlay, J., Shin, H. R., Bray, F., Forman, D., Mathers, C., & Parkin, D. M. (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International Journal of Cancer, 127, 2893–2917.

    Article  CAS  Google Scholar 

  2. Orimo, A., Gupta, P. B., Sgroi, D. C., Arenzana-Seisdedos, F., Delaunay, T., Naeem, R., et al. (2005). Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 121, 335–348.

    Article  CAS  PubMed  Google Scholar 

  3. Boire, A., Covic, L., Agarwal, A., Jacques, S., Sherifi, S., & Kuliopulos, A. (2005). PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell, 120, 303–313.

    Article  CAS  PubMed  Google Scholar 

  4. Tuxhorn, J. A., McAlhany, S. J., Dang, T. D., Ayala, G. E., & Rowley, D. R. (2002). Stromal cells promote angiogenesis and growth of human prostate tumors in a differential reactive stroma (DRS) xenograft model. Cancer Research, 62, 3298–3307.

    CAS  PubMed  Google Scholar 

  5. Liotta, L. A., & Kohn, E. C. (2001). The microenvironment of the tumour-host interface. Nature, 411, 375–379.

    Article  CAS  PubMed  Google Scholar 

  6. Fidler, I. J. (2002). The organ microenvironment and cancer metastasis. Differentiation, 2002(70), 498–505.

    Article  Google Scholar 

  7. De Wever, O., & Mareel, M. (2003). Role of tissue stroma in cancer cell invasion. The Journal of Pathology, 200, 429–447.

    Article  PubMed  Google Scholar 

  8. Friedman, S. L. (2004). Mechanisms of disease: Mechanisms of hepatic fibrosis and therapeutic implications. Nature Clinical Practice Gastroenterology and Hepatology, 1, 98–105.

    Google Scholar 

  9. Bataller, R., & Brenner, D. A. (2005). Liver fibrosis. The Journal of Clinical Investigation, 115, 209–218.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Jiao, J., Friedman, S. L., & Aloman, C. (2009). Hepatic fibrosis. Current Opinion in Gastroenterology, 25, 223–229.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Faouzi, S., Le, B. B., Neaud, V., Boussarie, L., Saric, J., Bioulac-Sage, P., et al. (1999). Myofibroblasts are responsible for collagen synthesis in the stroma of human hepatocellular carcinoma: An in vivo and in vitro study. The Journal of Hepatology, 30, 275–284.

    Article  CAS  Google Scholar 

  12. Amann, T., Bataille, F., Spruss, T., Muhlbauer, M., Gabele, E., Scholmerich, J., et al. (2009). Activated hepatic stellate cells promote tumorigenicity of hepatocellular carcinoma. Cancer Science, 100, 646–653.

    Article  CAS  PubMed  Google Scholar 

  13. Friedman, S. L., Roll, F. J., Boyles, J., & Bissell, D. M. (1985). Hepatic lipocytes: The principal collagen-producing cells of normal rat liver. Proceedings of the National Academy of Sciences of the United States of America, 82, 8681–8685.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Wynn, T. A. (2008). Cellular and molecular mechanisms of fibrosis. The Journal of Pathology, 2008(214), 199–210.

    Article  Google Scholar 

  15. Sokolovic, A., Sokolovic, M., Boers, W., Elferink, R. P., & Bosma, P. J. (2010). Insulin-like growth factor binding protein 5 enhances survival of LX2 human hepatic stellate cells. Fibrogenesis Tissue Repair, 3, 3.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Apte, M. V., Park, S., Phillips, P. A., Santucci, N., Goldstein, D., Kumar, R. K., et al. (2004). Desmoplastic reaction in pancreatic cancer: Role of pancreatic stellate cells. Pancreas, 29, 179–187.

    Article  CAS  PubMed  Google Scholar 

  17. Bachem, M. G., Schunemann, M., Ramadani, M., Siech, M., Beger, H., Buck, A., et al. (2005). Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells. Gastroenterology, 128, 907–921.

    Article  CAS  PubMed  Google Scholar 

  18. Hwang, R. F., Moore, T., Arumugam, T., Ramachandran, V., Amos, K. D., Rivera, A., et al. (2008). Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Research, 68, 918–926.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Pinzani, M., Milani, S., Grappone, C., Weber, F. L, Jr, Gentilini, P., & Abboud, H. E. (1994). Expression of platelet-derived growth factor in a model of acute liver injury. Hepatology, 19, 701–707.

    Article  CAS  PubMed  Google Scholar 

  20. Claesson-Welsh, L., Eriksson, A., Moren, A., Severinsson, L., Ek, B., Ostman, A., et al. (1988). cDNA cloning and expression of a human platelet-derived growth factor (PDGF) receptor specific for B-chain-containing PDGF molecules. Molecular and Cellular Biology, 8, 3476–3486.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Westermark, B., Siegbahn, A., Heldin, C. H., & Claesson-Welsh, L. (1990). B-type receptor for platelet-derived growth factor mediates a chemotactic response by means of ligand-induced activation of the receptor protein-tyrosine kinase. Proceedings of the National Academy of Sciences of the United States of America, 87, 128–132.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lai, C. C., Henningson, C., & DiMaio, D. (1998). Bovine papillomavirus E5 protein induces oligomerization and trans-phosphorylation of the platelet-derived growth factor beta receptor. Proceedings of the National Academy of Sciences of the United States of America, 95, 15241–15246.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Friedman, S. L., & Arthur, M. J. (1989). Activation of cultured rat hepatic lipocytes by Kupffer cell conditioned medium. Direct enhancement of matrix synthesis and stimulation of cell proliferation via induction of platelet-derived growth factor receptors. The Journal of Clinical Investigation, 84, 1780–1785.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Lee, J. S., Semela, D., Iredale, J., & Shah, V. H. (2007). Sinusoidal remodeling and angiogenesis: A new function for the liver-specific pericyte? Hepatology, 45, 817–825.

    Article  CAS  PubMed  Google Scholar 

  25. Olaso, E., Salado, C., Egilegor, E., Gutierrez, V., Santisteban, A., Sancho-Bru, P., et al. (2003). Proangiogenic role of tumor-activated hepatic stellate cells in experimental melanoma metastasis. Hepatology, 37, 674–685.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by National Natural Science Foundation of China (Grant Number 30971340 to Zhi-min Geng).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-min Geng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geng, Zm., Li, Qh., Li, Wz. et al. Activated Human Hepatic Stellate Cells Promote Growth of Human Hepatocellular Carcinoma in a Subcutaneous Xenograft Nude Mouse Model. Cell Biochem Biophys 70, 337–347 (2014). https://doi.org/10.1007/s12013-014-9918-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-9918-3

Keywords

Navigation