Skip to main content

Advertisement

Log in

Expression and Mechanism of BRP-39 in Bleomycin-Induced Pulmonary Fibrosis in Rat

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The purpose of the study was to explore the effects of breast regression protein 39 (BRP-39) in bleomycin-induced pulmonary fibrosis and its mechanism in pulmonary fibrosis by studying change in BRP-39 to provide a novel direction for the treatment of idiopathic pulmonary fibrosis. SPF grade male C57BL/6 rats were randomly divided into three groups, including bleomycin group, bleomycin+ BRP-39 recombinant protein group and control group. HE and Masson staining were applied to test the change in lung tissue after being treated by BRP-39, ELISA was applied to test the expression of TGF-β1 in different groups, and Western blot was used to test the expression of BRP-39 in rat lung tissue. Expression of BRP-39 increased, the fibrosis was obvious, and lung tissue collagen increased in bleomycin-induced pulmonary fibrosis in rat lung tissue. Increasing BRP-39 protein level and intratracheal bleomycin medication to establish pulmonary fibrosis model can aggravate pulmonary fibrosis. Along with the increase in BRP-39 protein level, TGF-β1 expression level also increased in lung tissue. Western blot results showed the expression of BRP-39, and TGF-β1 had the same trend in different groups. BRP-39 has effects in bleomycin-induced rat pulmonary fibrosis. Change in BRP-39 can affect the process of bleomycin-induced pulmonary fibrosis. The mechanism of BRP-3 in pulmonary fibrosis may work by regulating TGF-β1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xu, K., Wang, L., Qiang, M., Li, P., & Tang, B. (2011). A selective near-infrared fluorescent probe for singlet oxygen in living cells. Chemical Communications (Cambridge, England), 47(26), 7386–7388.

    Article  CAS  Google Scholar 

  2. Jones, M. G., Fletcher, S., & Richeldi, L. (2013). Idiopathic pulmonary fibrosis: Recent trials and current drug therapy. Respiration; international review of thoracic diseases, 68(5), 353–363.

    Google Scholar 

  3. Feng, R. E. (2013). Idiopathic pleuroparenchymal fibroelastosis: A new subtype of idiopathic interstitial pneumonia. Zhonghua jie he he hu xi za zhi = Zhonghua jiehe he huxi zazhi = Chinese journal of tuberculosis and respiratory diseases, 36(5), 329–330.

    Google Scholar 

  4. Sato, A., Tabata, M., Hayashi, K., & Saruta, T. (2003). Effects of the angiotensin II type 1 receptor antagonist candesartan, compared with angiotensin-converting enzyme inhibitors, on the urinary excretion of albumin and type IV collagen in patients with diabetic nephropathy. Clinical and experimental nephrology, 7(3), 215–220.

    Article  CAS  PubMed  Google Scholar 

  5. Chou, H. C., Lang, Y. D., Wang, L. F., Wu, T. Y., Hsieh, Y. F., & Chen, C. M. (2012). Angiotensin II type 1 receptor antagonist attenuates lung fibrosis in hyperoxia-exposed newborn rats. The Journal of pharmacology and experimental therapeutics, 340(1), 169–175.

    Article  CAS  PubMed  Google Scholar 

  6. Furuhashi, K., Suda, T., Nakamura, Y., Inui, N., Hashimoto, D., Miwa, S., et al. (2010). Increased expression of YKL-40, a chitinase-like protein, in serum and lung of patients with idiopathic pulmonary fibrosis. Respiratory Medicine, 104(8), 1204–1210.

    Article  PubMed  Google Scholar 

  7. Korthagen, N. M., van Moorsel, C. H., Barlo, N. P., Ruven, H. J., Kruit, A., Heron, M., et al. (2011). Serum and BALF YKL-40 levels are predictors of survival in idiopathic pulmonary fibrosis. Respiratory Medicine, 105(1), 106–113.

    Article  PubMed  Google Scholar 

  8. Kastrup, J., Johansen, J. S., Winkel, P., Hansen, J. F., Hildebrandt, P., Jensen, G. B., et al. (2009). High serum YKL-40 concentration is associated with cardiovascular and all-cause mortality in patients with stable coronary artery disease. European Heart Journal, 30(9), 1066–1072.

    Article  CAS  PubMed  Google Scholar 

  9. Mygind, N. D., Iversen, K., Kober, L., Goetze, J. P., Nielsen, H., Boesgaard, S., et al. (2013). The inflammatory biomarker YKL-40 at admission is a strong predictor of overall mortality. Journal of Internal Medicine, 273(2), 205–216.

    Article  CAS  PubMed  Google Scholar 

  10. Lee, C. G., Hartl, D., Lee, G. R., Koller, B., Matsuura, H., Da Silva, C. A., et al. (2009). Role of breast regression protein 39 (BRP-39)/chitinase 3-like-1 in Th2 and IL-13-induced tissue responses and apoptosis. The Journal of Experimental Medicine, 206(5), 1149–1166.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Nikota, J. K., Botelho, F. M., Bauer, C. M., Jordana, M., Coyle, A. J., Humbles, A. A., et al. (2011). Differential expression and function of breast regression protein 39 (BRP-39) in murine models of subacute cigarette smoke exposure and allergic airway inflammation. Respiratory Research, 12, 39.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Wcislo-Dziadecka, D., Kotulska, A., Brzezinska-Wcislo, L., Widuchowska, M., Lis-Swiety, A., Kopec-Medrek, M., et al. (2010). Serum human cartilage glycoprotein-39 in patients with systemic sclerosis: Relationship to skin and articular manifestation. Clinical Rheumatology, 29(8), 933–935.

    Article  PubMed  Google Scholar 

  13. Zhang, W., Murao, K., Zhang, X., Matsumoto, K., Diah, S., Okada, M., et al. (2010). Resveratrol represses YKL-40 expression in human glioma U87 cells. BMC Cancer, 10, 593.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Brochner, C. B., Johansen, J. S., Larsen, L. A., Bak, M., Mikkelsen, H. B., Byskov, A. G., et al. (2012). YKL-40 is differentially expressed in human embryonic stem cells and in cell progeny of the three germ layers. The Journal of Histochemistry and Cytochemistry, 60(3), 188–204.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Martinelli, M., Pacilli, A. M., Rivetti, S., Lauriola, M., Fasano, L., Carbonara, P., et al. (2011). A role for epidermal growth factor receptor in idiopathic pulmonary fibrosis onset. Molecular Biology Reports, 38(7), 4613–4617.

    Article  CAS  PubMed  Google Scholar 

  16. Li, X. X., Li, N., Ban, C. J., Zhu, M., Xiao, B., & Dai, H. P. (2011). Idiopathic pulmonary fibrosis in relation to gene polymorphisms of transforming growth factor-beta1 and plasminogen activator inhibitor 1. Chinese Medical Journal, 124(13), 1923–1927.

    CAS  PubMed  Google Scholar 

  17. Kliment, C. R., & Oury, T. D. (2010). Oxidative stress, extracellular matrix targets, and idiopathic pulmonary fibrosis. Free Radical Biology & Medicine, 49(5), 707–717.

    Article  CAS  Google Scholar 

  18. Rydell-Tormanen, K., Andreasson, K., Hesselstrand, R., Risteli, J., Heinegard, D., Saxne, T., et al. (2012). Extracellular matrix alterations and acute inflammation; developing in parallel during early induction of pulmonary fibrosis. Laboratory Investigation, 92(6), 917–925.

    Article  PubMed  Google Scholar 

  19. Shimbori, C., Gauldie, J., & Kolb, M. (2013). Extracellular matrix microenvironment contributes actively to pulmonary fibrosis. Current Opinion in Pulmonary Medicine, 19(5), 446–452.

    Article  CAS  PubMed  Google Scholar 

  20. Li, M., Krishnaveni, M. S., Li, C., Zhou, B., Xing, Y., Banfalvi, A., et al. (2011). Epithelium-specific deletion of TGF-beta receptor type II protects mice from bleomycin-induced pulmonary fibrosis. The Journal of Clinical Investigation, 121(1), 277–287.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Sureshbabu, A., Tonner, E., Allan, G. J., & Flint, D. J. (2011). Relative roles of TGF-beta and IGFBP-5 in idiopathic pulmonary fibrosis. Pulmonary Medicine, 2011, 517687.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lepparanta, O., Sens, C., Salmenkivi, K., Kinnula, V. L., Keski-Oja, J., Myllarniemi, M., et al. (2012). Regulation of TGF-beta storage and activation in the human idiopathic pulmonary fibrosis lung. Cell and Tissue Research, 348(3), 491–503.

    Article  PubMed  Google Scholar 

  23. Zhang, X., Zhang, Y., Tao, B., Teng, L., Li, Y., Cao, R., et al. (2012). Loss of Shp2 in alveoli epithelia induces deregulated surfactant homeostasis, resulting in spontaneous pulmonary fibrosis. FASEB Journal, 26(6), 2338–2350.

    Article  CAS  PubMed  Google Scholar 

  24. Neunlist, M., Aubert, P., Bonnaud, S., Van Landeghem, L., Coron, E., Wedel, T., et al. (2007). Enteric glia inhibit intestinal epithelial cell proliferation partly through a TGF-beta1-dependent pathway. American Journal of Physiology. Gastrointestinal and Liver Physiology, 292(1), G231–G241.

    Article  CAS  PubMed  Google Scholar 

  25. Kasai, H., Allen, J. T., Mason, R. M., Kamimura, T., & Zhang, Z. (2005). TGF-beta1 induces human alveolar epithelial to mesenchymal cell transition (EMT). Respiratory Research, 6, 56.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Lee, J., Choi, J. H., & Joo, C. K. (2013). TGF-beta1 regulates cell fate during epithelial-mesenchymal transition by upregulating survivin. Cell Death and Disease, 4, e714.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Doerner, A. M., & Zuraw, B. L. (2009). TGF-beta1 induced epithelial to mesenchymal transition (EMT) in human bronchial epithelial cells is enhanced by IL-1beta but not abrogated by corticosteroids. Respiratory Research, 10, 100.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Vivar, R., Humeres, C., Ayala, P., Olmedo, I., Catalan, M., Garcia, L., et al. (2013). TGF-beta1 prevents simulated ischemia/reperfusion-induced cardiac fibroblast apoptosis by activation of both canonical and non-canonical signaling pathways. Biochimica et Biophysica Acta, 1832(6), 754–762.

    Article  CAS  PubMed  Google Scholar 

  29. Li, C., Qu, X., Xu, W., Qu, N., Mei, L., Liu, Y., et al. (2013). Arsenic trioxide induces cardiac fibroblast apoptosis in vitro and in vivo by up-regulating TGF-beta1 expression. Toxicology Letters, 219(3), 223–230.

    Article  CAS  PubMed  Google Scholar 

  30. Son, J. Y., Kim, S. Y., Cho, S. H., Shim, H. S., Jung, J. Y., Kim, E. Y., et al. (2013). TGF-beta1 T869C polymorphism may affect susceptibility to idiopathic pulmonary fibrosis and disease severity. Lung, 191(2), 199–205.

    Article  CAS  PubMed  Google Scholar 

  31. Cu, A., Ye, Q., Sarria, R., Nakamura, S., Guzman, J., & Costabel, U. (2009). N-acetylcysteine inhibits TNF-alpha, sTNFR, and TGF-beta1 release by alveolar macrophages in idiopathic pulmonary fibrosis in vitro. Sarcoidosis, Vasculitis, and Diffuse Lung Diseases, 26(2), 147–154.

    CAS  PubMed  Google Scholar 

  32. Kang, H. R., Cho, S. J., Lee, C. G., Homer, R. J., & Elias, J. A. (2007). Transforming growth factor (TGF)-beta1 stimulates pulmonary fibrosis and inflammation via a Bax-dependent, bid-activated pathway that involves matrix metalloproteinase-12. The Journal of biological chemistry, 282(10), 7723–7732.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiong Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, C., Yang, Y., Lin, Y. et al. Expression and Mechanism of BRP-39 in Bleomycin-Induced Pulmonary Fibrosis in Rat. Cell Biochem Biophys 70, 251–257 (2014). https://doi.org/10.1007/s12013-014-9889-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-9889-4

Keywords

Navigation