Skip to main content
Log in

The Effects of Hispidulin on Bupivacaine-Induced Neurotoxicity: Role of AMPK Signaling Pathway

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Bupivacaine is a sodium channel blocker, which is widely used for local infiltration nerve block, epidural and intrathecal anesthesia. However, bupivacaine could cause nerve damage. Hispidulin was shown to be able to penetrate the blood–brain barrier and possess antiepileptic activity. In this study, we investigate whether hispidulin administration could attenuate bupivacaine-induced neurotoxicity. Bupivacaine-challenged mouse neuroblastoma N2a cells were treated with hispidulin. The neuron injury was assessed by examination of cell viability and apoptosis. The levels of activation of AMP-activated protein kinase (AMPK) signaling pathway were examined along with the effect of blocking AMPK signaling on cell viability in the presence of hispidulin and bupivacaine. Our results showed that Bupivacaine treatment significantly decreased cell viability and induced apoptosis. Treatment with hispidulin significantly attenuated bupivacaine-induced cell injury. In addition, hispidulin treatment increased the levels of phospho-AMPK and phospho-GSK3β and attenuated bupivacaine-induced loss in mitochondrial membrane potential. Furthermore, we found that blocking AMPK signaling pathway significantly abolished the cytoprotective effect of hispidulin against bupivacaine-induced cell injury. Our findings suggest that treatment of neuroblastoma cells with hispidulin-protected neural cells from Bupivacaine-induced injury via the activation of the AMPK/GSK3β signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kohase, H., Miyamoto, T., & Umino, M. (2002). A new method of continuous maxillary nerve block with an indwelling catheter. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontics, 94(2), 162–166.

    Article  Google Scholar 

  2. Yang, S., et al. (2011). Local anesthetic Schwann cell toxicity is time and concentration dependent. Regional Anesthesia and Pain Medicine, 36(5), 444–451.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Hadzic, A., et al. (2004). A comparison of infraclavicular nerve block versus general anesthesia for hand and wrist day-case surgeries. Anesthesiology, 101(1), 127–132.

    Article  PubMed  Google Scholar 

  4. Liu, S. S., et al. (2005). A comparison of regional versus general anesthesia for ambulatory anesthesia: A meta-analysis of randomized controlled trials. Anesthesia and Analgesia, 101(6), 1634–1642.

    Article  PubMed  Google Scholar 

  5. Richman, J. M., et al. (2006). Does continuous peripheral nerve block provide superior pain control to opioids? A meta-analysis. Anesthesia and Analgesia, 102(1), 248–257.

    Article  PubMed  Google Scholar 

  6. Perez-Castro, R., et al. (2009). Cytotoxicity of local anesthetics in human neuronal cells. Anesthesia and Analgesia, 108(3), 997–1007.

    Article  CAS  PubMed  Google Scholar 

  7. Koff, M. D., et al. (2008). Severe brachial plexopathy after an ultrasound-guided single-injection nerve block for total shoulder arthroplasty in a patient with multiple sclerosis. Anesthesiology, 108(2), 325–328.

    Article  PubMed  Google Scholar 

  8. Shah, S., et al. (2005). Neurologic complication after anterior sciatic nerve block. Anesthesia and Analgesia, 100(5), 1515–1517. (Table of contents).

    Article  PubMed  Google Scholar 

  9. Watts, S. A., & Sharma, D. J. (2007). Long-term neurological complications associated with surgery and peripheral nerve blockade: Outcomes after 1065 consecutive blocks. Anaesthesia and Intensive Care, 35(1), 24–31.

    CAS  PubMed  Google Scholar 

  10. Hardie, D. G. (2007). AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy. Nature Reviews Molecular Cell Biology, 8(10), 774–785.

    Article  CAS  PubMed  Google Scholar 

  11. Russell, R, 3rd. (2003). The Role of AMP-activated protein kinase in fuel selection by the stressed heart. Current Hypertension Reports, 5(6), 459–465.

    Article  PubMed  Google Scholar 

  12. Lee, S. J., et al. (2010). AMPK attenuates bupivacaine-induced neurotoxicity. Journal of Dental Research, 89(8), 797–801.

    Article  CAS  PubMed  Google Scholar 

  13. Bourdillat, B., et al. (1988). Mechanism of action of hispidulin, a natural flavone, on human platelets. Progress in Clinical and Biological Research, 280, 211–214.

    CAS  PubMed  Google Scholar 

  14. He, L., et al. (2011). Hispidulin, a small flavonoid molecule, suppresses the angiogenesis and growth of human pancreatic cancer by targeting vascular endothelial growth factor receptor 2-mediated PI3K/Akt/mTOR signaling pathway. Cancer Science, 102(1), 219–225.

    Article  CAS  PubMed  Google Scholar 

  15. Tan, R. X., et al. (1999). Mono- and sesquiterpenes and antifungal constituents from Artemisia species. Planta Medica, 65(1), 64–67.

    Article  CAS  PubMed  Google Scholar 

  16. Kavvadias, D., et al. (2003). Constituents of sage (Salvia officinalis) with in vitro affinity to human brain benzodiazepine receptor. Planta Medica, 69(2), 113–117.

    Article  CAS  PubMed  Google Scholar 

  17. Kavvadias, D., et al. (2004). The flavone hispidulin, a benzodiazepine receptor ligand with positive allosteric properties, traverses the blood–brain barrier and exhibits anticonvulsive effects. British Journal of Pharmacology, 142(5), 811–820.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Lin, Y. C., et al. (2010). Hispidulin potently inhibits human glioblastoma multiforme cells through activation of AMP-activated protein kinase (AMPK). Journal of Agriculture and Food Chemistry, 58(17), 9511–9517.

    Article  CAS  Google Scholar 

  19. Khan, M., et al. (2012). Pseudolaric acid B induces caspase-dependent and caspase-independent apoptosis in u87 glioblastoma cells. Evidence Based Complementary an Alternative Medicine, 2012, 957568.

    Google Scholar 

  20. Lu, Y., et al. (2010). Anesthetic sevoflurane causes neurotoxicity differently in neonatal naive and Alzheimer disease transgenic mice. Anesthesiology, 112(6), 1404–1416.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Wei, H., et al. (2005). Isoflurane and sevoflurane affect cell survival and BCL-2/BAX ratio differently. Brain Research, 1037(1–2), 139–147.

    Article  CAS  PubMed  Google Scholar 

  22. Wang, X., et al. (2010). Alpha-lipoic acid prevents bupivacaine-induced neuron injury in vitro through a PI3K/Akt-dependent mechanism. Neurotoxicology, 31(1), 101–112.

    Article  PubMed  Google Scholar 

  23. Auroy, Y., et al. (1997). Serious complications related to regional anesthesia: Results of a prospective survey in France. Anesthesiology, 87(3), 479–486.

    Article  CAS  PubMed  Google Scholar 

  24. Johnson, M. E., et al. (2002). Effect of local anesthetic on neuronal cytoplasmic calcium and plasma membrane lysis (necrosis) in a cell culture model. Anesthesiology, 97(6), 1466–1476.

    Article  CAS  PubMed  Google Scholar 

  25. Ozcan, M., et al. (2010). Effects of levobupivacaine and bupivacaine on intracellular calcium signaling in cultured rat dorsal root ganglion neurons. Journal of Receptors Signal Transduction Research, 30(2), 115–120.

    Article  CAS  Google Scholar 

  26. Lirk, P., et al. (2008). In vitro, inhibition of mitogen-activated protein kinase pathways protects against bupivacaine- and ropivacaine-induced neurotoxicity. Anesthesia and Analgesia, 106(5), 1456–1464. (table of contents).

    Article  CAS  PubMed  Google Scholar 

  27. Park, C. J., et al. (2005). Bupivacaine induces apoptosis via ROS in the Schwann cell line. Journal of Dental Research, 84(9), 852–857.

    Article  CAS  PubMed  Google Scholar 

  28. Ma, R., et al. (2010). Dexamethasone attenuated bupivacaine-induced neuron injury in vitro through a threonine-serine protein kinase B-dependent mechanism. Neuroscience, 167(2), 329–342.

    Article  CAS  PubMed  Google Scholar 

  29. Wang, Z., et al. (2012). Lithium attenuates bupivacaine-induced neurotoxicity in vitro through phosphatidylinositol-3-kinase/threonine-serine protein kinase B- and extracellular signal-regulated kinase-dependent mechanisms. Neuroscience, 206, 190–200.

    Article  CAS  PubMed  Google Scholar 

  30. Jung, J. E., et al. (2004). 5-Aminoimidazole-4-carboxamide-ribonucleoside enhances oxidative stress-induced apoptosis through activation of nuclear factor-kappaB in mouse Neuro 2a neuroblastoma cells. Neuroscience Letters, 354(3), 197–200.

    Article  CAS  PubMed  Google Scholar 

  31. Ramamurthy, S., & Ronnett, G. V. (2006). Developing a head for energy sensing: AMP-activated protein kinase as a multifunctional metabolic sensor in the brain. Journal of Physiology, 574(Pt 1), 85–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Spasic, M. R., Callaerts, P., & Norga, K. K. (2009). AMP-activated protein kinase (AMPK) molecular crossroad for metabolic control and survival of neurons. Neuroscientist, 15(4), 309–316.

    Article  CAS  PubMed  Google Scholar 

  33. Lu, J., et al. (2011). Bupivacaine induces reactive oxygen species production via activation of the AMP-activated protein kinase-dependent pathway. Pharmacology, 87(3–4), 121–129.

    Article  CAS  PubMed  Google Scholar 

  34. Arsikin, K., et al. (2012). Autophagy-dependent and -independent involvement of AMP-activated protein kinase in 6-hydroxydopamine toxicity to SH-SY5Y neuroblastoma cells. Biochimica et Biophysica Acta, 1822(11), 1826–1836.

    Article  CAS  PubMed  Google Scholar 

  35. Culmsee, C., et al. (2001). AMP-activated protein kinase is highly expressed in neurons in the developing rat brain and promotes neuronal survival following glucose deprivation. Journal of Molecular Neuroscience, 17(1), 45–58.

    Article  CAS  PubMed  Google Scholar 

  36. Kim, J., et al. (2011). AMPK activation inhibits apoptosis and tau hyperphosphorylation mediated by palmitate in SH-SY5Y cells. Brain Research, 1418, 42–51.

    Article  CAS  PubMed  Google Scholar 

  37. Mayer, C. M., & Belsham, D. D. (2010). Palmitate attenuates insulin signaling and induces endoplasmic reticulum stress and apoptosis in hypothalamic neurons: Rescue of resistance and apoptosis through adenosine 5′ monophosphate-activated protein kinase activation. Endocrinology, 151(2), 576–585.

    Article  CAS  PubMed  Google Scholar 

  38. Blazquez, C., et al. (2001). The AMP-activated protein kinase prevents ceramide synthesis de novo and apoptosis in astrocytes. FEBS Letters, 489(2–3), 149–153.

    Article  CAS  PubMed  Google Scholar 

  39. Park, Y. J., et al. (2013). Activation of AMP-activated protein kinase alleviates homocysteine-mediated neurotoxicity in SH-SY5Y cells. Neurochemical Research, 38(8), 1561–1571.

    Article  CAS  PubMed  Google Scholar 

  40. Lu, J., et al. (2010). Quercetin activates AMP-activated protein kinase by reducing PP2C expression protecting old mouse brain against high cholesterol-induced neurotoxicity. The Journal of Pathology, 222(2), 199–212.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, X., et al. (2010). A pharmacological activator of AMP-activated protein kinase protects hypoxic neurons in a concentration-dependent manner. Neurochemical Research, 35(8), 1281–1289.

    Article  CAS  PubMed  Google Scholar 

  42. Su, C. C., et al. (2007). Phosphatidylinositol 3-kinase/Akt activation by integrin–tumor matrix interaction suppresses Fas-mediated apoptosis in T cells. The Journal of Immunology, 179(7), 4589–4597.

    Article  CAS  PubMed  Google Scholar 

  43. Nepal, M., et al. (2013). Hispidulin attenuates bone resorption and osteoclastogenesis via the RANKL-induced NF-κB and NFATc1 pathways. European Journal of Pharmacology, 715(1–3), 96–104.

    Article  CAS  PubMed  Google Scholar 

  44. Voelckel, W. G., et al. (2005). Signs of inflammation after sciatic nerve block in pigs. Anesthesia and Analgesia, 101(6), 1844–1846.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengyuan Zhang.

Additional information

Xinhuan Niu and Jie Chen have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niu, X., Chen, J., Wang, P. et al. The Effects of Hispidulin on Bupivacaine-Induced Neurotoxicity: Role of AMPK Signaling Pathway. Cell Biochem Biophys 70, 241–249 (2014). https://doi.org/10.1007/s12013-014-9888-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-9888-5

Keywords

Navigation