Skip to main content

Advertisement

Log in

Hypoxia-Inducible Factor 1-Alpha Regulates Cancer-Inhibitory Effect of Human Mesenchymal Stem Cells

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) have been shown to be able to inhibit cancer cells growth. In this study, we investigate the role and the molecular mechanism of hypoxia-inducible factor 1-alpha (HIF-1α) in inhibition of cancer cell proliferation by human MSCs through depletion and overexpression of HIF-1α in human MSCs. We found that the cell culture medium from HIF-1α-depleted Z3 cells significantly promotes breast cancer MCF-7 cell proliferation and colony formation. The expression of p21 is increased in MCF-7 cells, but p53 level remains unchanged. In contrast, the cultured medium from HIF-1α-overexpressed Z3 cells dramatically inhibits MCF-7 cell proliferation and colony formation. The expression of p21 is inhibited in MCF-7 cells, but p53 does not change. We conclude HIF-1α promotes inhibitory effect of human MCSs on breast cancer cell proliferation and colony formation. This process is tightly correlated with cell cycle protein p21 level in cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Khakoo, A. Y., Pati, S., Anderson, S. A., Reid, W., Elshal, M. F., Rovira, I. I., et al. (2006). Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. Journal of Experimental Medicine, 203, 1235–1247.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Hsieh, T. C., Wijeratne, E. K., Liang, J. Y., Gunatilaka, A. L., & Wu, J. M. (2005). Differential control of growth, cell cycle progression, and expression of NF-kappaB in human breast cancer cells MCF-7, MCF-10A, and MDA-MB-231 by ponicidin and oridonin, diterpenoids from the chinese herb Rabdosia rubescens. Biochemical and Biophysical Research Communications, 337, 224–231.

    Article  CAS  PubMed  Google Scholar 

  3. Brogi, E., Schatteman, G., Wu, T., Kim, E. A., Varticovski, L., Keyt, B., & Isner, J. M. (1996). Hypoxia-induced paracrine regulation of vascular endothelial growth factor receptor expression. Journal of Clinical Investigation, 97, 469–476.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Janssen, H. L., Haustermans, K. M., Sprong, D., Blommestijn, G., Hofland, I., Hoebers, F. J., et al. (2002). HIF-1A, pimonidazole, and iododeoxyuridine to estimate hypoxia and perfusion in human head-and-neck tumors. International Journal of Radiation Oncology Biology Physics, 54, 1537–1549.

    Article  CAS  Google Scholar 

  5. Kitajima, Y., & Miyazaki, K. (2013). The critical impact of HIF-1a on gastric cancer biology. Cancers (Basel), 5, 15–26.

    Article  CAS  Google Scholar 

  6. Kelly, B. D., Hackett, S. F., Hirota, K., Oshima, Y., Cai, Z., Berg-Dixon, S., et al. (2003). Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circulation Research, 93, 1074–1081.

    Article  CAS  PubMed  Google Scholar 

  7. Huang, J. H., Lee, F. S., Pasha, T. L., Sammel, M. D., Karakousis, G., Xu, G., et al. (2010). Analysis of HIF-1a and its regulator, PHD2, in retroperitoneal sarcomas: clinico-pathologic implications. Cancer Biology & Therapy, 9, 303–311.

    Article  Google Scholar 

  8. Oladipupo, S. S., Hu, S., Santeford, A. C., Yao, J., Kovalski, J. R., Shohet, R. V., et al. (2011). Conditional HIF-1 induction produces multistage neovascularization with stage-specific sensitivity to VEGFR inhibitors and myeloid cell independence. Blood, 117, 4142–4153.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Kaidi, A., Williams, A. C., & Paraskeva, C. (2007). Interaction between beta-catenin and HIF-1 promotes cellular adaptation to hypoxia. Nature Cell Biology, 9, 210–217.

    Article  CAS  PubMed  Google Scholar 

  10. Tokita, K., Terasaki, P., Maruya, E., & Saji, H. (2001). Tumour regression following stem cell infusion from daughter to microchimeric mother. Lancet, 358, 2047–2048.

    Article  CAS  PubMed  Google Scholar 

  11. Maffioletti, S. M., Noviello, M., English, K., & Tedesco, F. S. (2014). Stem cell transplantation for muscular dystrophy: the challenge of immune response. Biomedical Research International, 2014, 964010.

    Article  Google Scholar 

  12. Karam, C., Mauermann, M. L., Johnston, P. B., Lahoria, R., Engelstad, J. K., & Dyck, P. J. (2014). Immune-mediated neuropathies following stem cell transplantation. Journal of Neurology, Neurosurgery and Psychiatry, 85, 638–642.

    Article  PubMed  Google Scholar 

  13. Grayson, W. L., Zhao, F., Izadpanah, R., Bunnell, B., & Ma, T. (2006). Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs. Journal of Cellular Physiology, 207, 331–339.

    Article  CAS  PubMed  Google Scholar 

  14. Engelhardt, S., Al-Ahmad, A. J., Gassmann, M., & Ogunshola, O. O. (2014). Hypoxia selectively disrupts brain microvascular endothelial tight junction complexes through a hypoxia-inducible factor-1 (HIF-1) dependent mechanism. Journal of Cellular Physiology, 229, 1096–1105.

    Article  CAS  PubMed  Google Scholar 

  15. Bosch, P., Pratt, S. L., & Stice, S. L. (2006). Isolation, characterization, gene modification, and nuclear reprogramming of porcine mesenchymal stem cells. Biology of Reproduction, 74, 46–57.

    Article  CAS  PubMed  Google Scholar 

  16. Zhao, L. R., Duan, W. M., Reyes, M., Keene, C. D., Verfaillie, C. M., & Low, W. C. (2002). Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Experimental Neurology, 174, 11–20.

    Article  PubMed  Google Scholar 

  17. Lee, J. Y., Choi, J. Y., Lee, K. M., Park, S. K., Han, S. H., Noh, D. Y., et al. (2008). Rare variant of hypoxia-inducible factor-1alpha (HIF-1A) and breast cancer risk in Korean women. Clinica Chimica Acta, 389, 167–170.

    Article  CAS  Google Scholar 

  18. Nakatsuka, A., Wada, J., Hida, K., Hida, A., Eguchi, J., Teshigawara, S., et al. (2012). RXR antagonism induces G0/G1 cell cycle arrest and ameliorates obesity by up-regulating the p53-p21(Cip1) pathway in adipocytes. Journal of Pathology, 226, 784–795.

    Article  CAS  PubMed  Google Scholar 

  19. Yang, X., Wang, W., Qin, J. J., Wang, M. H., Sharma, H., Buolamwini, J. K., et al. (2012). JKA97, a novel benzylidene analog of harmine, exerts anti-cancer effects by inducing G1 arrest, apoptosis, and p53-independent up-regulation of p21. PLoS ONE, 7, e34303.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Wu, G., Lin, N., Xu, L., Liu, B., & Feitelson, M. A. (2013). UCN-01 induces S and G2/M cell cycle arrest through the p53/p21(waf1) or CHK2/CDC25C pathways and can suppress invasion in human hepatoma cell lines. BMC Cancer, 13, 167.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Hu.

Additional information

Yuan Hu and Jing Bai have contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Bai, J., Hou, SX. et al. Hypoxia-Inducible Factor 1-Alpha Regulates Cancer-Inhibitory Effect of Human Mesenchymal Stem Cells. Cell Biochem Biophys 72, 131–136 (2015). https://doi.org/10.1007/s12013-014-0420-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0420-8

Keywords

Navigation