Cell Staining by Photo-activated Dye and Its Conjugate with Chitosan

Abstract

Photo-activated or “Caged” rhodamine dyes are the most useful for microscopic investigation of biological tissue by various fluorescent techniques. Novel precursor of the fluorescent dye (PFD813) has been studied for photosensitive staining of numerous animal cells. The functional rhodamine dye (Rho813) with intensive fluorescence has been obtained after photoactivation of its precursor PFD813 inside cells. The dye Rho813 has been successfully used for the optical detection of particular features in biological objects (HaCaT cells, HBL-100, MDCK, lymphocytes). Moreover, the chitosan conjugate with PFD molecules (“Chitosan-PFD813″) has been obtained and studied for the first time. The developed procedures and obtained data are important for further applications of novel precursors of fluorescent dyes (“caged” dyes) for microscopic probing of biological objects. As example, the synthesized “Chitosan-PFD813″ has been successfully applied in this study for intracellular transport visualization by fluorescent microscopy.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Grimm, J. B., Heckman, L. M., & Lavis, L. D. (2013). The chemistry of small-molecule fluorogenic probes. Progress in Molecular Biology and Translational Science, 113, 1–34.

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Haugland, R. P., Spence, M. T. Z., Johnson, I. D., & Basey, A. (2005). The handbook: a guide to fluorescent probes and labeling technologies (10th ed.). Eugene: Molecular Probes.

    Google Scholar 

  3. 3.

    Lavis, L. D., & Raines, R. T. (2008). Bright ideas for chemical biology. ACS Chemical Biology, 3, 142–155.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. 4.

    Beija, M., Afonso, C. A., & Martinho, J. M. (2009). Synthesis and application of rhodamine derivatives as fluorescent probes. Chemical Society Reviews, 38, 2410–2433.

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Foelling, J., Belov, V., Riedel, D., Schoenle, A., Egner, A., Eggeling, C., et al. (2008). Fluorescence nanoscopy with optical sectioning by two-photon induced molecular switching using continuous-wave lasers. ChemPhysChem, 9(2), 321–326.

    Article  CAS  Google Scholar 

  6. 6.

    Wysocki, L. M., Grimm, J. B., Tkachuk, A. N., Brown, T. A., Betzig, E., & Lavis, L. D. (2011). Facile and general synthesis of photoactivatable xanthene dyes. Angewandte Chemie International Edition, 50, 112016–112019.

    Article  Google Scholar 

  7. 7.

    Mitchison, T. J., Sawin, K. E., Theriot, J. A., Gee, K., Mallavarapo, A., & Manion, G. (1998). Caged fluorescent probes. Methods in Enzymology, 291, 63–79.

    CAS  PubMed  Google Scholar 

  8. 8.

    Belov, V. N., Bossi, M. L., Foiling, J., Boyarskiy, V. P., & Hell, S. W. (2009). Rhodamine spiroamides for multicolor single molecule switching fluorescent nanoscopy. Chemistry A European Journal, 15, 10762–10776.

    Article  CAS  Google Scholar 

  9. 9.

    Zaitsev, S. Y., Belov, V., Mitronova, G. Y., & Moebius, D. (2010). Mixed monolayers of a novel rhodamine derivative. Mendeleev Communications, 20, 203–204.

    Article  CAS  Google Scholar 

  10. 10.

    Lavis, L. D., Grimm, J. B., Wysocki, L. M., Tkachuka, A. N., Browna, T. A., & Betziga, E. (2012). Facile syntheses of photoactivatable rhodamines. Microscopy and Microanalysis, 18, 668–669.

    Article  Google Scholar 

  11. 11.

    Politz, J. C. (1999). Use of caged fluorochromes to track macromolecular movement in living cells. Cell Biology, 9, 284–287.

    Article  CAS  Google Scholar 

  12. 12.

    Banala, S., Maurel, D., Manley, S., & Johnsson, K. (2012). A caged, localizable rhodamin derivative for superresolution microscopy. ACS Chemical Biology, 7, 289–293.

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Wei, Y., Aydin, Z., Liu, Z., & Guo, M. (2012). A turn-on fluorescent sensor for imaging labile Fe3+ in live neuronal cells at subcellular resolution. ChemBioChem, 13, 1569–1573.

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Hell, S. W. (2007). Far-field optical nanoscopy. Science, 316, 1153–1158.

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Foelling, J., Belov, V., Kunetsky, R., Medda, R., Schoenle, A., Egner, A., et al. (2007). Photochromic rhodamines provide nanoscopy with optical sectioning. Angewandte Chemie International Edition, 46, 6266–6270.

    Article  CAS  Google Scholar 

  16. 16.

    Boyarskiy, V. P., Belov, V., Medda, R., Hein, B., Bossi, M., & Hell, S. W. (2008). Photostable, amino reactive and water-soluble fluorescent labels based on sulfonated rhodamine with a rigidized xanthene fragment. Chemistry-A European Journal, 14, 1784–1792.

    Article  CAS  Google Scholar 

  17. 17.

    Belov, V., Wurm, C. A., Boyarskiy, V. P., Jakobs, S., & Hell, S. W. (2010). Rhodamines N N a novel class of caged fluorescent dyes. Angewandte Chemie International Edition, 49, 3520–3523.

    Article  CAS  Google Scholar 

  18. 18.

    Zaitsev, S Yu., Shaposhnikov, M. N., Solovyeva, D. O., Zaitsev, I. S., & Mobius, D. (2013). Novel precursors of fluorescent dyes. 1. Interaction of the dyes with model phospholipid in monolayers. Cell Biochemistry and Biophysics, 67(3), 1365–1370.

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Zaitsev, S. Y., Shaposhnikov, M. N., & Svirshchevskaya, E. V. (2010). Staining of cells by new photoactivated fluorescent dyes. Veterinary Medicine, 3–4, 32–34. (in Russian).

    Google Scholar 

  20. 20.

    Shaposhnikov, M. N., Chudakov, D. B., Generalov, A. A., Savina, A. A., & Zaitsev, S. Y. (2012). The fluorescence dependence of a new photoactivatable dye on the environment parameters. Fundamental Research, 9(2), 322–327. (in Russian).

    Google Scholar 

  21. 21.

    Shaposhnikov, M. N., Chudakov, D. B., Generalov, A. A., & Zaitsev, S. Y. (2012). Preparation of chitosan conjugate with photoactivatable fluorescent dye and its application in cell microscopy. Veterinary Medicine, 3–4, 32–35. (in Russian).

    Google Scholar 

  22. 22.

    Zaitsev, S. Y. (2010). Supramolecular nanodimensional systems at the interfaces: concepts and perspectives for bio nanotechnology (in Russian). Moscow: LENAND.

    Google Scholar 

  23. 23.

    Zaitsev, S. Y. (2009). Membrane nanostructures on the basis of biologically acitive compounds for bionanotechnological purposes. Nanotechnologies in Russia, 4, 379–396.

    Article  Google Scholar 

Download references

Acknowledgments

Some parts of this work were supported by grant from Russian Scientific Foundation (Project 14-16-00046). We thank Dr. Svirshchevskaya E.V. and Ph.D.-student Generalov A.A. for cell cultivation and suggestions on cell staining experiments; Dr. Belov V. N. for preparation of the precursor of fluorescent dye.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sergei Yu. Zaitsev.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zaitsev, S.Y., Shaposhnikov, M.N., Solovyeva, D.O. et al. Cell Staining by Photo-activated Dye and Its Conjugate with Chitosan. Cell Biochem Biophys 71, 1475–1481 (2015). https://doi.org/10.1007/s12013-014-0370-1

Download citation

Keywords

  • Caged fluorescent dye
  • Cell staining
  • Photoactivation
  • Biomembranes
  • Lipids
  • Conjugate
  • Chitosan