Skip to main content
Log in

Use of Auditory Evoked Potentials for Intra-Operative Awareness in Anesthesia: A Consciousness-Based Conceptual Model

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Auditory evoked potentials (AEPs) have been used as a measure of the depth of anesthesia during the intra-operative process. AEPs are classically divided, on the basis of their latency, into first, fast, middle, slow, and late components. The use of auditory evoked potential has been advocated for the assessment of Intra-operative awareness (IOA), but has not been considered seriously enough to universalize it. It is because we have not explored enough the impact of auditory perception and auditory processing on the IOA phenomena as well as on the subsequent psychological impact of IOA on the patient. More importantly, we have seldom tried to look at the phenomena of IOP from the perspective of consciousness itself. This perspective is especially important because many of IOA phenomena exist in the subconscious domain than they do in the conscious domain of explicit recall. Two important forms of these subconscious manifestations of IOA are the implicit recall phenomena and post-operative dreams related to the operation. Here, we present an integrated auditory consciousness-based model of IOA. We start with a brief description of auditory awareness and the factors affecting it. Further, we proceed to the evaluation of conscious and subconscious information processing by auditory modality and how they interact during and after intra-operative period. Further, we show that both conscious and subconscious auditory processing affect the IOA experience and both have serious psychological implications on the patient subsequently. These effects could be prevented by using auditory evoked potential during monitoring of anesthesia, especially the mid-latency auditory evoked potentials (MLAERs). To conclude our model with present hypothesis, we propose that the use of auditory evoked potential should be universal with general anesthesia use in order to prevent the occurrences of distressing outcomes resulting from both conscious and subconscious auditory processing during anesthesia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Myles, P. S., Leslie, K., McNeil, J., Forbes, A., & Chan, M. T. (2004). Bispectral index monitoring to prevent awareness during anaesthesia: the B-Aware randomised controlled trial. Lancet, 363, 1457–1763.

    Article  Google Scholar 

  2. Ghoneim, M. M., Block, R. I., Haffarnan, M., & Mathews, M. J. (2009). Awareness during anesthesia: risk factors, causes and sequelae: a review of reported cases in the literature. Anesthesia and Analgesia, 108, 527–535.

    Article  PubMed  Google Scholar 

  3. Schwender, D., Kunze-Kronawitter, H., Dietrich, P., Klasing, S., Forst, H., & Madler, C. (1998). Conscious awareness during general anaesthesia: patients’ perceptions, emotions, cognition and reactions. British Journal of Anaesthesia, 80, 133–139.

    Article  CAS  PubMed  Google Scholar 

  4. Alexandrov, Y. I., Klucharev, V., & Sams, M. (2007). Effect of emotional context in auditory-cortex processing. International Journal of Psychophysiology, 65, 261–271.

    Article  PubMed  Google Scholar 

  5. Yu, F., & J. Y. Luo, Y. J. (2009). Auditory-induced emotion modulates processes of response inhibition: an event-related potential study. NeuroReport, 2009(20), 25–30.

    Article  Google Scholar 

  6. Plourde, G., Belin, P., Chartrand, D., Fiset, P., Backman, S. B., Xie, G., et al. (2006). Cortical processing of complex auditory stimuli during alterations of consciousness with the general anesthetic propofol. Anesthesiology, 104, 448–457.

    Article  PubMed  Google Scholar 

  7. Rosen, M Lu J N. (1987). Awareness: clinical aspects, consciousness, awareness and pain in general anaesthesia. London: Butterworths.

    Google Scholar 

  8. Sandhu, K., & Dash, H. (2009). Awareness during anaesthesia. Indian Journal of Anaesthesia, 53, 148–157.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Samuelsson, P., Brudin, L., & Sandin, R. H. (2008). Intraoperative dreams reported after general anaesthesia are not early interpretations of delayed awareness. Acta Anaesthesiologica Scandinavica, 52, 805–809.

    Article  CAS  PubMed  Google Scholar 

  10. Leslie, K. H. S., Paech, M. J., Kurowski, I., & Whybrow, T. (2007). Dreaming during anesthesia and anesthetic depth in elective surgery patients: a prospective cohort study. Anesthesiology, 2007(106), 33–42.

    Article  Google Scholar 

  11. Franks, N. P. (2008). General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nature Reviews Neuroscience, 2008(9), 370–386.

    Article  Google Scholar 

  12. John, E. R., & Prichep, L. S. (2005). The anesthetic cascade: a theory of how anesthesia suppresses consciousness. Anesthesiology, 2005(105), 447–471.

    Article  Google Scholar 

  13. Lydic, R., & Baghdoyan, H. A. (2005). Sleep, anesthesiology, and the neurobiology of arousal state control. Anesthesiology, 2005(103), 1268–1295.

    Article  Google Scholar 

  14. Alkire, M. T., & Miller, J. (2005). General anesthesia and the neural correlates of consciousness. Progress in Brain Research, 2005(150), 229–244.

    Article  Google Scholar 

  15. Alkire, M. T., Hudetz, A. G., & Tononi, G. (2008). Consciousness and anesthesia. Science, 322, 876–880.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Koelsch, S., Heinke, W., Sammler, D., & Olthoff, D. (2006). Auditory processing during deep propofol sedation and recovery from unconsciousness. Clinical Neurophysiology, 117, 1746–1759.

    Article  CAS  PubMed  Google Scholar 

  17. Heinke, W., Kenntner, R., Gunter, T. C., Sammler, D., Olthoff, D., & Koelsch, S. (2004). Sequential effects of increasing propofol sedation on frontal and temporal cortices as indexed by auditory event-related potentials. Anesthesiology, 100, 617–625.

    Article  CAS  PubMed  Google Scholar 

  18. Ypparila, H., Karhu, J., Westeren-Punnonen, S., Musialowicz, T., & Partanen, J. (2002). Evidence of auditory processing during postoperative propofol sedation. Clinical Neurophysiology, 113, 1357–1364.

    Article  PubMed  Google Scholar 

  19. Simpson, T. P., Manara, A. R., Kane, N. M., Barton, R. L., Rowlands, C. A., & Butler, S. R. (2002). Effect of propofol anaesthesia on the event-related potential mismatch negativity and the auditory-evoked potential N1. British Journal of Anaesthesia, 89, 382–388.

    Article  CAS  PubMed  Google Scholar 

  20. Heinke, W., & Koelsch, S. (2005). The effects of anesthetics on brain activity and cognitive function. Current Opinion in Anaesthesiology, 18, 625–631.

    Article  PubMed  Google Scholar 

  21. Reinsel, R. A., Veselis, R. A., Dnistrian, A. M., Feshchenko, V. A., Beattie, B. J., & Duff, M. R. (2000). Midazolam decreases cerebral blood flow in the left prefrontal cortex in a dose-dependent fashion. International Journal of Neuropsychopharmacology, 117, 117–127.

    Article  Google Scholar 

  22. Aceto, P., Valente, A., Gorgoglione, M., Adducci, E., & De Cosmo, G. (2003). Relationship between awareness and middle latency auditory evoked responses during surgical anaesthesia. British Journal of Anaesthesia, 90, 630–635.

    Article  CAS  PubMed  Google Scholar 

  23. Griefahn, B., Scheuch, K., Jansen, G., & Spreng, M. (2004). Protection goals for residents in the vicinity of civil airports. Noise Health, 6, 51–62.

    CAS  PubMed  Google Scholar 

  24. Muzet, A. (2007). Environmental noise, sleep and health. Sleep Medicine Reviews, 11, 135–142.

    Article  PubMed  Google Scholar 

  25. Nordby, H., Hugdahl, K., Stickgold, R., Bronnick, K. S., & Hobson, J. A. (1996). Event-related potentials (ERPs) to deviant auditory stimuli during sleep and waking. NeuroReport, 10, 1082–1086.

    Article  Google Scholar 

  26. Karakas, S., Cakmak, E. D., Bekci, B., & Aydin, H. (2007). Oscillatory responses representing differential auditory processing in sleep. International Journal of Psychophysiology, 65, 40–50.

    Article  PubMed  Google Scholar 

  27. Bastuji, H., Garcia-Larrea, L., Franc, C., & Mauguiere, F. (1995). Brain processing of stimulus deviance during slow-wave and paradoxical sleep: a study of human auditory evoked responses using the oddball paradigm. Journal of Clinical Neurophysiology, 12, 155–167.

    Article  CAS  PubMed  Google Scholar 

  28. Perrin, F., Garcia-Larrea, L., Mauguiere, F., & Bastuji, H. (1999). A differential brain response to the subject’s own name persists during sleep. Clinical Neurophysiology, 110, 2153–2164.

    Article  CAS  PubMed  Google Scholar 

  29. Portas, C. M., Krakow, K., Allen, P., Josephs, O., Armony, J. L., & Frith, C. D. (2000). Auditory processing across the sleep-wake cycle: simultaneous EEG and fMRI monitoring in humans. Neuron, 28, 991–999.

    Article  CAS  PubMed  Google Scholar 

  30. Ranta, S. O., Laurila, R., Saario, J., Ali-Melkkila, T., & Hynynen, M. (1998). Awareness with recall during general anesthesia: incidence and risk factors. Anesthesia and Analgesia, 86, 1084–1089.

    CAS  PubMed  Google Scholar 

  31. Osterman, J. E., Hopper, J., Heran, W. J., Keane, T. M., & van der Kolk, B. A. (2001). Awareness under anesthesia and the development of posttraumatic stress disorder. General Hospital Psychiatry, 23, 198–204.

    Article  CAS  PubMed  Google Scholar 

  32. Schacter, D. L., & Church, B. (1995). Implicit memory in amnesic patients: when is auditory priming spared? Journal of the International Neuropsychological Society, 1995(1), 434–442.

    Article  Google Scholar 

  33. Jacobson, G. P., Kraus, N., & McGee, T. J. (1997). Hearing as reflected by middle and long latency event-related potentials. Advances in Oto-Rhino-Laryngology, 53, 46–84.

    Article  CAS  PubMed  Google Scholar 

  34. Deiber, M. P., Ibanez, V., Fischer, C., Perrin, F., & Mauguiere, F. (1988). Sequential mapping favours the hypothesis of distinct generators for Na and Pa middle latency auditory evoked potentials. Electroencephalography and Clinical Neurophysiology, 71, 187–197.

    Article  CAS  PubMed  Google Scholar 

  35. Pockett, S. (1999). Anesthesia and the electrophysiology of auditory consciousness. Consciousness and Cognition, 8, 45–61.

    Article  CAS  PubMed  Google Scholar 

  36. Zatorre, R. J., Evans, A. C., Meyer, E., & Gjedde, A. (1992). Lateralization of phonetic and pitch discrimination in speech processing. Science, 256, 846–849.

    Article  CAS  PubMed  Google Scholar 

  37. Kraus N, N., & McGee, T. (1995). The middle latency response generating system. Electroencephalography and Clinical Neurophysiology. Supplement, 44, 93–101.

    PubMed  Google Scholar 

  38. Merikle, P. M., & Daneman, M. (1996). Memory for events during anaesthesia: a meta-analysis. In B. Bonke, J. G. Bovill, & N. Moergan (Eds.), Memory and Awareness in Anaesthesia III (pp. 108–121). The Netherlands: Van Gorgum.

    Google Scholar 

  39. Schwender, D., Kaiser, A., Klasing, S., Peter, K., & Poppel, E. (1994). Midlatency auditory evoked potentials and explicit and implicit memory in patients undergoing cardiac surgery. Anesthesiology, 80, 493–501.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puxia Suo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X., Suo, P., Yuan, X. et al. Use of Auditory Evoked Potentials for Intra-Operative Awareness in Anesthesia: A Consciousness-Based Conceptual Model. Cell Biochem Biophys 71, 441–447 (2015). https://doi.org/10.1007/s12013-014-0221-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0221-0

Keywords

Navigation