Skip to main content

Advertisement

Log in

Clinical Implications of BMI-1 in Cancer Stem Cells of Laryngeal Carcinoma

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The objective of this study is to investigate the chemoresistance of CD133+ cancer stem cells in Hep-2 cells of laryngeal cancer and detect the expression mRNA and protein levels of BMI-1 in CD133+ cells and CD133 cells. The response of Hep-2 cells to different chemotherapeutic agents was investigated, and the expression of CD133 was studied. Fluorescence-activated cell sorting analysis was used to identify CD133, and the CD133+ subset of cells was separated and analyzed chemotherapy resistance. Colony formation assays were studied and cells were injected subcutaneously into axillary fossa of node mice to measure the tumor-forming ability. RT-PCR and Western blot analyses were used to detect the expression levels of BMI-1 in the different subpopulation cells. It was concluded that chemotherapy enriched the CD133+ subpopulation 2-fourfold, relative to the untreated cells. 1.55 ± 0.28 % of Hep-2 cells were observed to be CD133+ cells. Flow cytometric analysis revealed that after the treatment with these chemotherapeutic agents, the expression of CD133 was up to 5.16 ± 0.86 %, 4.94 ± 0.58 %, 3.66 ± 0.59 %. After 5-FU treatment, the expression of CD133 was 6.7 ± 1.6 % relative to the untreated mice 2.6 ± 0.96 % by nude mice tumor xenograft model. CD133+ cancer stem cells were more resistant to chemotherapy; the proliferation capability and tumor-forming ability were no difference after chemotherapy. Semi-quantitative RT-PCR and Western blot analyses provided strong evidence that BMI-1 expression in CD133+ cells is different from CD133 cells remarkably. Taken together, it was confirmed that CD133+ cancer stem cells were chemoresistant and BMI-1 was highly expressed in these CD133+ cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen, H., Zhou, L., Dou, T., Wan, G., Tang, H., & Tian, J. (2011). BMI1’s maintenance of the proliferative capacity of laryngeal cancer stem cells. Head and Neck, 33(8), 1115–1125.

    Article  PubMed  Google Scholar 

  2. Rubin, B. P., & Duensing, A. (2006). Mechanisms of resistance to small molecule kinase inhibition in the treatment of solid tumors. Laboratory Investigation, 86(10), 981–986.

    Article  CAS  PubMed  Google Scholar 

  3. Raguz, S., & Yague, E. (2008). Resistance to chemotherapy: New treatments and novel insights into an old problem. British Journal of Cancer, 99(3), 387–391.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Burkert, J., Wright, N. A., & Alison, M. R. (2006). Stem cells and cancer: An intimate relationship. The Journal of Pathology, 209(3), 287–297.

    Article  CAS  PubMed  Google Scholar 

  5. Grotenhuis, B. A., Wijnhoven, B. P., & van Lanschot, J. J. (2012). Cancer stem cells and their potential implications for the treatment of solid tumors. Journal of Surgical Oncology, 106(2), 209–215.

    Article  CAS  PubMed  Google Scholar 

  6. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 3983–3988.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A., Bayani, J., Hide, T., et al. (2004). Identification of human brain tumour initiating cells. Nature, 432(7015), 396–401.

    Article  CAS  PubMed  Google Scholar 

  8. Hemmati, H. D., Nakano, I., Lazareff, J. A., Masterman-Smith, M., Geschwind, D. H., Bronner-Fraser, M., et al. (2003). Cancerous stem cells can arise from pediatric brain tumors. Proceedings of the National Academy of Sciences of the United States of America, 100(25), 15178–15183.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Patrawala, L., Calhoun, T., Schneider-Broussard, R., Li, H., Bhatia, B., Tang, S., et al. (2006). Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene, 25(12), 1696–1708.

    Article  CAS  PubMed  Google Scholar 

  10. Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J., & Maitland, N. J. (2005). Prospective identification of tumorigenic prostate cancer stem cells. Cancer Research, 65(23), 10946–10951.

    Article  CAS  PubMed  Google Scholar 

  11. Houghton, J., Stoicov, C., Nomura, S., Rogers, A. B., Carlson, J., Li, H., et al. (2004). Gastric cancer originating from bone marrow-derived cells. Science, 306(5701), 1568–1571.

    Article  CAS  PubMed  Google Scholar 

  12. Kim, C. F., Jackson, E. L., Woolfenden, A. E., Lawrence, S., Babar, I., Vogel, S., et al. (2005). Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell, 121(6), 823–835.

    Article  CAS  PubMed  Google Scholar 

  13. O’Brien, C. A., Pollett, A., Gallinger, S., & Dick, J. E. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445(7123), 106–110.

    Article  PubMed  Google Scholar 

  14. Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C., et al. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445(7123), 111–115.

    Article  CAS  PubMed  Google Scholar 

  15. Ma, S., Chan, K. W., Hu, L., Lee, T. K., Wo, J. Y., Ng, I. O., et al. (2007). Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology, 132(7), 2542–2556.

    Article  CAS  PubMed  Google Scholar 

  16. Yang, Z. F., Ngai, P., Ho, D. W., Yu, W. C., Ng, M. N., Lau, C. K., et al. (2008). Identification of local and circulating cancer stem cells in human liver cancer. Hepatology, 47(3), 919–928.

    Article  CAS  PubMed  Google Scholar 

  17. Spillane, J. B., & Henderson, M. A. (2007). Cancer stem cells: A review. ANZ journal of surgery, 77(6), 464–468.

    Article  PubMed  Google Scholar 

  18. Eramo, A., Lotti, F., Sette, G., Pilozzi, E., Biffoni, M., Di Virgilio, A., et al. (2008). Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death and Differentiation, 15(3), 504–514.

    Article  CAS  PubMed  Google Scholar 

  19. Hagiwara, S., Kudo, M., Ueshima, K., Chung, H., Yamaguchi, M., Takita, M., et al. (2011). The cancer stem cell marker CD133 is a predictor of the effectiveness of S1+ pegylated interferon alpha-2b therapy against advanced hepatocellular carcinoma. Journal of Gastroenterology, 46(2), 212–221.

    Article  CAS  PubMed  Google Scholar 

  20. Ong, C. W., Kim, L. G., Kong, H. H., Low, L. Y., Iacopetta, B., Soong, R., et al. (2010). CD133 expression predicts for non-response to chemotherapy in colorectal cancer. Modern Pathology, 23(3), 450–457.

    Article  CAS  PubMed  Google Scholar 

  21. Hermann, P. C., Huber, S. L., Herrler, T., Aicher, A., Ellwart, J. W., Guba, M., et al. (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 1(3), 313–323.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao, P., Lu, Y., Jiang, X., & Li, X. (2011). Clinicopathological significance and prognostic value of CD133 expression in triple-negative breast carcinoma. Cancer Science, 102(5), 1107–1111.

    Article  CAS  PubMed  Google Scholar 

  23. Zhou, L., Wei, X., Cheng, L., Tian, J., & Jiang, J. J. (2007). CD133, one of the markers of cancer stem cells in Hep-2 cell line. The Laryngoscope, 117(3), 455–460.

    Article  CAS  PubMed  Google Scholar 

  24. Wei, X. D., Zhou, L., Cheng, L., Tian, J., Jiang, J. J., & Maccallum, J. (2009). In vivo investigation of CD133 as a putative marker of cancer stem cells in Hep-2 cell line. Head and Neck, 31(1), 94–101.

    Article  CAS  PubMed  Google Scholar 

  25. Liu, G., Yuan, X., Zeng, Z., Tunici, P., Ng, H., Abdulkadir, I. R., et al. (2006). Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Molecular cancer, 5, 67.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Ma, S., Lee, T. K., Zheng, B. J., Chan, K. W., & Guan, X. Y. (2008). CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene, 27(12), 1749–1758.

    Article  CAS  PubMed  Google Scholar 

  27. Sparmann, A., & van Lohuizen, M. (2006). Polycomb silencers control cell fate, development and cancer. Nature Reviews Cancer, 6(11), 846–856.

    Article  CAS  PubMed  Google Scholar 

  28. Valk-Lingbeek, M. E., Bruggeman, S. W., & van Lohuizen, M. (2004). Stem cells and cancer; the polycomb connection. Cell, 118(4), 409–418.

    Article  CAS  PubMed  Google Scholar 

  29. Park, I. K., Qian, D., Kiel, M., Becker, M. W., Pihalja, M., Weissman, I. L., et al. (2003). Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature, 423(6937), 302–305.

    Article  CAS  PubMed  Google Scholar 

  30. Molofsky, A. V., Pardal, R., Iwashita, T., Park, I. K., Clarke, M. F., & Morrison, S. J. (2003). Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature, 425(6961), 962–967.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Lessard, J., & Sauvageau, G. (2003). Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature, 423(6937), 255–260.

    Article  CAS  PubMed  Google Scholar 

  32. Liu, S., Dontu, G., Mantle, I. D., Patel, S., Ahn, N. S., Jackson, K. W., et al. (2006). Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Research, 66(12), 6063–6071.

    Article  CAS  PubMed  Google Scholar 

  33. Prince, M. E., Sivanandan, R., Kaczorowski, A., Wolf, G. T., Kaplan, M. J., Dalerba, P., et al. (2007). Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 104(3), 973–978.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Tan, T. T., Degenhardt, K., Nelson, D. A., Beaudoin, B., Nieves-Neira, W., Bouillet, P., et al. (2005). Key roles of BIM-driven apoptosis in epithelial tumors and rational chemotherapy. Cancer Cell, 7(3), 227–238.

    Article  CAS  PubMed  Google Scholar 

  35. Bouillet, P., Purton, J. F., Godfrey, D. I., Zhang, L. C., Coultas, L., Puthalakath, H., et al. (2002). BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature, 415(6874), 922–926.

    Article  CAS  PubMed  Google Scholar 

  36. Richter-Larrea, J. A., Robles, E. F., Fresquet, V., Beltran, E., Rullan, A. J., Agirre, X., et al. (2010). Reversion of epigenetically mediated BIM silencing overcomes chemoresistance in Burkitt lymphoma. Blood, 116(14), 2531–2542.

    Article  CAS  PubMed  Google Scholar 

  37. Weir, H. K., Thun, M. J., Hankey, B. F., Ries, L. A., Howe, H. L., Wingo, P. A., et al. (2003). Annual report to the nation on the status of cancer, 1975–2000, featuring the uses of surveillance data for cancer prevention and control. Journal of the National Cancer Institute, 95(17), 1276–1299.

    Article  PubMed  Google Scholar 

  38. Dean, M., Fojo, T., & Bates, S. (2005). Tumour stem cells and drug resistance. Nature Reviews Cancer, 5(4), 275–284.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No.30973288), the Natural Science Foundation of Jilin Province of China (No.20130101151JC), and Doctoral Fund of Ministry of Education of China (No. 20120061120092).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingpu Yang or Chunshun Jin.

Additional information

Dan Yu and Yan Liu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, D., Liu, Y., Yang, J. et al. Clinical Implications of BMI-1 in Cancer Stem Cells of Laryngeal Carcinoma. Cell Biochem Biophys 71, 261–269 (2015). https://doi.org/10.1007/s12013-014-0194-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0194-z

Keywords

Navigation