Skip to main content

Advertisement

Log in

Exploration of the Effect of mmu-miR-142-5p on Osteoblast and the Mechanism

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The objective of this study is to explore the effect of mmu-miR-142-5p on osteoblast and the mechanism. Neonatal New Zealand rabbits were selected to collect and culture primary osteoblasts after being killed. The agonists agomiR-142-5p, agomiR-NC and inhibitors antagomiR-142-5p, antagomiR-NC were transfected to establish mmu-miR-142-5p osteoblast model. 48 h after transfection, total RNA was extracted, ELISA was used to detect ALP level, Western Blot was used to detect HSP27 level, and RT-PCR was used to detect levels of RunX2 and OC. Rabbit osteoblasts showed triangle shape and grew adhering to the wall, cytoplasm extended and protruded. As the culture time prolonged, the cell volume was increased, and the amount showed exponential growth. After transfection, the abundance was significantly increased in agonist group and significantly decreased in inhibitor group, indicating that exogenous agonist can successfully up-regulate mmu-miR-142-5p level and exogenous inhibitor can down-regulate mmu-miR-142-5p level in osteoblast. Compared with control group, ALP level was significantly increased in agonist group and decreased in inhibitor group. Transfection of exogenous agonist can up-regulate HSP27 level in osteoblast, and transfection of exogenous inhibitor can decrease HSP27 level in osteoblast; however, there was no effect on HSP27 mRNA level. RunX2 mRNA and OC mRNA were significantly increased in agonist group and decreased in inhibitor group. Transfection of exogenous nucleic acid agomiR-142-5p can up-regulate the abundance and activity of mmu-miR-142-5p, and transfection of antagomiR-142-5p can down-regulate the abundance and activity of mmu-miR-142-5p, indicating that mmu-miR-142-5p can effectively helps the mineralization of osteoblast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cho, Y. E., Alcantara, E., Kumaran, S., et al. (2010). Red yeast rice stimulates osteoblast proliferation and increases alkaline phosphatase activity in MC3T3-E1 cells. Nutrition Research, 30(7), 501–510.

    Article  CAS  PubMed  Google Scholar 

  2. Sato, C., Iwasaki, T., Kitano, S., et al. (2012). Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation. Biochemical and Biophysical Research Communications, 423(1), 200–205.

    Article  CAS  PubMed  Google Scholar 

  3. Maeda, K., Kobayashi, Y., Udagawa, N., et al. (2012). Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis. Nature Medicine, 18(3), 405–412.

    Article  CAS  PubMed  Google Scholar 

  4. Chatakun, P., Núñez-Toldrà, R., López, E. J. D., et al. (2014). The effect of five proteins on stem cells used for osteoblast differentiation and proliferation: A current review of the literature. Cellular and Molecular Life Sciences, 71(1), 113–142.

    Article  CAS  PubMed  Google Scholar 

  5. Ochiai, H., Okada, S., Saito, A., et al. (2012). Inhibition of insulin-like growth factor-1 (IGF-1) expression by prolonged transforming growth factor-β1 (TGF-β1) administration suppresses osteoblast differentiation. Journal of Biological Chemistry, 287(27), 22654–22661.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Hong, D., Chen, H. X., Yu, H. Q., et al. (2010). Morphological and proteomic analysis of early stage of osteoblast differentiation in osteoblastic progenitor cells. Experimental Cell Research, 316(14), 2291–2300.

    Article  CAS  PubMed  Google Scholar 

  7. Lee, K. N., Jang, W. G., Kim, E. J., et al. (2012). Orphan nuclear receptor chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) protein negatively regulates bone morphogenetic protein 2-induced osteoblast differentiation through suppressing runt-related gene 2 (Runx2) activity. Journal of Biological Chemistry, 287(23), 18888–18899.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Oh, J. H., Kim, H. J., Kim, T. I., et al. (2012). The effects of the modulation of the fibronectin-binding capacity of fibrin by thrombin on osteoblast differentiation. Biomaterials, 33(16), 4089–4099.

    Article  CAS  PubMed  Google Scholar 

  9. Hsu, Y. L., Huang, M. S., Yang, C. J., et al. (2011). Lung tumor-associated osteoblast-derived bone morphogenetic protein-2 increased epithelial-to-mesenchymal transition of cancer by Runx2/Snail signaling pathway. Journal of Biological Chemistry, 286(43), 37335–37346.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Kim, K., Dean, D., Wallace, J., et al. (2011). The influence of stereolithographic scaffold architecture and composition on osteogenic signal expression with rat bone marrow stromal cells. Biomaterials, 32(15), 3750–3763.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Kim, E. J., Kang, I. H., Lee, J. W., et al. (2013). MiR-433 mediates ERRγ-suppressed osteoblast differentiation via direct targeting to Runx2 mRNA in C3H10T1/2 cells. Life Sciences, 92(10), 562–568.

    Article  CAS  PubMed  Google Scholar 

  12. Hu, R., Liu, W., Li, H., et al. (2011). A Runx2/miR-3960/miR-2861 regulatory feedback loop during mouse osteoblast differentiation. Journal of Biological Chemistry, 286(14), 12328–12339.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Guo, J., Ren, F., Wang, Y., et al. (2012). miR-764-5p promotes osteoblast differentiation through inhibition of CHIP/STUB1 expression. Journal of Bone and Mineral Research, 27(7), 1607–1618.

    Article  CAS  PubMed  Google Scholar 

  14. Rachner, T. D., Khosla, S., & Hofbauer, L. C. (2011). Osteoporosis: now and the future. The Lancet, 377(9773), 1276–1287.

    Article  CAS  Google Scholar 

  15. Boonen, S., Reginster, J. Y., Kaufman, J. M., et al. (2012). Fracture risk and zoledronic acid therapy in men with osteoporosis. New England Journal of Medicine, 367(18), 1714–1723.

    Article  CAS  PubMed  Google Scholar 

  16. Papaioannou, A., Morin, S., Cheung, A. M., et al. (2010). 2010 clinical practice guidelines for the diagnosis and management of osteoporosis in Canada: summary. Canadian Medical Association Journal, 182(17), 1864–1873.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Boonen, S., Reginster, J. Y., Kaufman, J. M., et al. (2012). Fracture risk and zoledronic acid therapy in men with osteoporosis. New England Journal of Medicine, 367(18), 1714–1723.

    Article  CAS  PubMed  Google Scholar 

  18. Liu, Y., Berendsen, A. D., Jia, S., et al. (2012). Intracellular VEGF regulates the balance between osteoblast and adipocyte differentiation. The Journal of Clinical Investigation, 122(9), 3101–3113.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Niu, D. F., Kondo, T., Nakazawa, T., et al. (2012). Transcription factor Runx2 is a regulator of epithelial–mesenchymal transition and invasion in thyroid carcinomas. Laboratory Investigation, 92(8), 1181–1190.

    Article  CAS  PubMed  Google Scholar 

  20. Li, S., Kong, H., Yao, N., et al. (2011). The role of runt-related transcription factor 2 (Runx2) in the late stage of odontoblast differentiation and dentin formation. Biochemical and Biophysical Research Communications, 410(3), 698–704.

    Article  CAS  PubMed  Google Scholar 

  21. Kato, H., Katayama, N., Taguchi, Y., et al. (2013). A synthetic oligopeptide derived from enamel matrix derivative promotes the differentiation of human periodontal ligament stem cells into osteoblast-like cells with increased mineralization. Journal of Periodontology, 84(10), 1476–1483.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao, L., Huang, J., Zhang, H., et al. (2011). Tumor necrosis factor inhibits mesenchymal stem cell differentiation into osteoblasts via the ubiquitin E3 ligase Wwp1. Stem Cells, 29(10), 1601–1610.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Wu, T., Zhou, H., Hong, Y., et al. (2012). miR-30 family members negatively regulate osteoblast differentiation. Journal of Biological Chemistry, 287(10), 7503–7511.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Wang, J., Wang, X., Holz, J. D., et al. (2013). Runx1 Is critical for PTH-induced onset of mesenchymal progenitor cell chondrogenic differentiation. PLoS One, 8(9), e74255.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Laflamme, C., Curt, S., & Rouabhia, M. (2010). Epidermal growth factor and bone morphogenetic proteins upregulate osteoblast proliferation and osteoblastic markers and inhibit bone nodule formation. Archives of Oral Biology, 55(9), 689–701.

    Article  CAS  PubMed  Google Scholar 

  26. Tamura, M., Uyama, M., Sugiyama, Y., et al. (2013). Canonical Wnt signaling activates miR-34 expression during osteoblastic differentiation. Molecular Medicine Reports, 8(6), 1807–1811.

    CAS  PubMed  Google Scholar 

  27. Hu, R., Li, H., Liu, W., et al. (2010). Targeting miRNAs in osteoblast differentiation and bone formation. Expert Opinion on Therapeutic Targets, 14(10), 1109–1120.

    Article  CAS  PubMed  Google Scholar 

  28. Wang, X., Guo, B., Li, Q., et al. (2013). miR-214 targets ATF4 to inhibit bone formation. Nature Medicine, 19(1), 93–100.

    Article  PubMed  Google Scholar 

  29. Saito, Y., Suzuki, H., Tsugawa, H., et al. (2012). Overexpression of miR-142-5p and miR-155 in gastric mucosa-associated lymphoid tissue (MALT) lymphoma resistant to Helicobacter pylori eradication. PLoS One, 7(11), e47396.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruibo Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Zhu, Y. & Sun, B. Exploration of the Effect of mmu-miR-142-5p on Osteoblast and the Mechanism. Cell Biochem Biophys 71, 255–260 (2015). https://doi.org/10.1007/s12013-014-0193-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0193-0

Keywords

Navigation