Skip to main content

Advertisement

Log in

In Silico Analysis of miRNA-Mediated Gene Regulation in OCA and OA Genes

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Albinism is an autosomal recessive genetic disorder due to low secretion of melanin. The oculocutaneous albinism (OCA) and ocular albinism (OA) genes are responsible for melanin production and also act as a potential targets for miRNAs. The role of miRNA is to inhibit the protein synthesis partially or completely by binding with the 3′UTR of the mRNA thus regulating gene expression. In this analysis, we predicted the genetic variation that occurred in 3′UTR of the transcript which can be a reason for low melanin production thus causing albinism. The single nucleotide polymorphisms (SNPs) in 3′UTR cause more new binding sites for miRNA which binds with mRNA which leads to inhibit the translation process either partially or completely. The SNPs in the mRNA of OCA and OA genes can create new binding sites for miRNA which may control the gene expression and lead to hypopigmentation. We have developed a computational procedure to determine the SNPs in the 3′UTR region of mRNA of OCA (TYR, OCA2, TYRP1 and SLC45A2) and OA (GPR143) genes which will be a potential cause for albinism. We identified 37 SNPs in five genes that are predicted to create 87 new binding sites on mRNA, which may lead to abrogation of the translation process. Expression analysis confirms that these genes are highly expressed in skin and eye regions. It is well supported by enrichment analysis that these genes are mainly involved in eye pigmentation and melanin biosynthesis process. The network analysis also shows how the genes are interacting and expressing in a complex network. This insight provides clue to wet-lab researches to understand the expression pattern of OCA and OA genes and binding phenomenon of mRNA and miRNA upon mutation, which is responsible for inhibition of translation process at genomic levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Haldeman-Englert, C. Sex-linked recessive. Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA.

  2. Garrod, A. E. (1923). Inborn errors of metabolism. London: H. Frowde and Hodder & Stoughton.

    Google Scholar 

  3. Chen, H. (2006). Atlas of genetic diagnosis and counseling (pp. 37–40). Totowa: Humana Press.

    Google Scholar 

  4. King, R. A., et al. (2003). Tyrosinase gene mutations in oculocutaneous albinism 1 (OCA1): Definition of the phenotype. Human Genetics, 113, 502–513.

    Article  CAS  PubMed  Google Scholar 

  5. Toyofuku, K., et al. (2002). The etiology of oculocutaneous albinism (OCA) type II: The pink protein modulates the processing and transport of tyrosinase. Pigment Cell Research, 15, 217–224.

    Article  CAS  PubMed  Google Scholar 

  6. Sarangarajan, R., & Boissy, R. E. (2001). Tyrp1 and oculocutaneous albinism type 3. Pigment Cell Research, 14, 437–444.

    Article  CAS  PubMed  Google Scholar 

  7. Meyer, H., Vitavska, O., & Wieczorek, H. (2011). Identification of an animal sucrose transporter. Journal of Cell Science, 124, 1984–1991.

    Article  CAS  PubMed  Google Scholar 

  8. Costin, G. E., et al. (2003). Tyrosinase processing and intracellular trafficking is disrupted in mouse primary melanocytes carrying the underwhite (uw) mutation. A model for oculocutaneous albinism (OCA) type 4. Journal of Cell Science, 116, 3203–3212.

    Article  CAS  PubMed  Google Scholar 

  9. Cortese, K., et al. (2005). The ocular albinism type 1 (OA1) gene controls melanosome maturation and size. Investigative Ophthalmology & Visual Science, 46, 4358–4364.

    Article  Google Scholar 

  10. Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, B., Wang, Q., & Pan, X. (2007). MicroRNAs and their regulatory roles in animals and plants. Journal of Cellular Physiology, 210, 279–289.

    Article  CAS  PubMed  Google Scholar 

  12. Chen, K., & Rajewsky, N. (2007). The evolution of gene regulation by transcription factors and microRNAs. Nature Reviews Genetics, 8, 93–103.

    Article  CAS  PubMed  Google Scholar 

  13. Griffiths-Jones, S., Saini, H. K., van Dongen, S., & Enright, A. J. (2008). miRBase: Tools for microRNA genomics. Nucleic Acids Research, 36, D154–D158.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Bentwich, I., et al. (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nature Genetics, 37, 766–770.

    Article  CAS  PubMed  Google Scholar 

  15. Cargill, M., et al. (1999). Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nature Genetics, 22, 231–238.

    Article  CAS  PubMed  Google Scholar 

  16. Balu, K., & Purohit, R. (2013). Mutational analysis of TYR gene and its structural consequences in OCA1A. Gene, 513, 184–195.

    Article  Google Scholar 

  17. Kamaraj, B., & Purohit, R. (2013). Computational screening of disease-associated mutations in OCA2 gene. Cell Biochemistry and Biophysics,. doi:10.1007/s12013-013-9697-2.

    Google Scholar 

  18. Kamaraj, B., & Purohit, B. (2013). In-Silico Screening and Molecular Dynamics Simulation of Disease-Associated nsSNP in TYRP1 Gene and Its Structural Consequences in OCA3. BioMed Research International, 697051, 13. doi:10.1155/2013/697051.

    Google Scholar 

  19. Kumar, A., Rajendran, V., Sethumadhavan, R., & Purohit, R. (2013). Relationship between a point mutation S97C in CK1δ protein and its affect on ATP-binding affinity. Journal of Biomolecular Structure and Dynamics, 10(1080/07391102), 770373.

    Google Scholar 

  20. Kumar, A., & Purohit, R. (2013). Cancer associated E17K mutation causes rapid conformational drift in AKT1 pleckstrin homology (PH) domain. PLoS One, 8(5), e64364. doi:10.1371/journal.pone.0064364.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Yip, Y. L., et al. (2008). Annotating single amino acid polymorphisms in the UniProt/Swiss-Prot knowledgebase. Human Mutation, 29, 361–366.

    Article  CAS  PubMed  Google Scholar 

  22. Liu, C., et al. (2012). MirSNP, a database of polymorphisms altering miRNA target sites, identifies miRNA1-related SNPs in GWAS SNPs and eQTLs. BMC Genomics, 13, 661.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Sayers, E. W., et al. (2012). Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 40, D13–D25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Zhang, B., Kirov, S., & Snoddy, J. (2005). WebGestalt: An integrated system for exploring gene sets in various biological contexts. Nucleic Acids Research, 33, W741–W748.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Warde-Farley, D., et al. (2010). The GeneMANIA Prediction server: Biological network integration for gene prioritization and predicting gene function. Nucleic Acids Research, 38, W214–W220.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Montojo, J., et al. (2010). GeneMANIA cytoscape plug-in: Fast gene function predictions on the desktop. Bioinformatics, 26, 2927–2928.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Smoot, M. E., et al. (2011). Cytoscape 2.8: New features for data integration and network visualization. Bioinformatics, 27, 431–432.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Mignone, F., Gissi, C., Liuni, S., & Pesole, G. (2002). Untranslated regions of mRNAs. Genome Biology, 3, 1–10.

    Article  Google Scholar 

  29. Chin, L. J., et al. (2008). A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk. Cancer Research, 68, 8535–8540.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Mishra, P. J., et al. (2007). A miR-24 microRNA binding site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance. Proceedings of the National Academy of Sciences of the United States of America, 104, 13513–13518.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Ryan, B. M., Robles, A. I., & Harris, C. C. (2010). Genetic variation in microRNA networks: The implications for cancer research. Nature Reviews Cancer, 10, 389–402.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Ratner, E. S., et al. (2011). A KRAS variant is a biomarker of poor outcome, platinum chemotherapy resistance and a potential target for therapy in ovarian cancer. Oncogene, 31, 4559–4566.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Teo, M. T., et al. (2012). The role of microRNA binding site polymorphisms in DNA repair genes as risk factors for bladder cancer and breast cancer and their impact on radiotherapy outcomes. Carcinogenesis, 33, 581–586.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge the management of Vellore Institute of Technology University for providing the facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rituraj Purohit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamaraj, B., Gopalakrishnan, C. & Purohit, R. In Silico Analysis of miRNA-Mediated Gene Regulation in OCA and OA Genes. Cell Biochem Biophys 70, 1923–1932 (2014). https://doi.org/10.1007/s12013-014-0152-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0152-9

Keywords

Navigation