Skip to main content
Log in

A Model for Small Heat Shock Protein Inhibition of Polyglutamine Aggregation

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Polyglutamine (polyQ) repeat expansions that lead to the formation of amyloid aggregates are linked to several devastating neurodegenerative disorders. While molecular chaperones, including the small heat shock proteins (sHsp), play an important role in protection against protein misfolding, the aberrant protein folding that accompanies these polyQ diseases overwhelms the chaperone network. By generating a model structure to explain the observed suppression of spinocerebellar ataxia 3 (SCA3) by the sHsp αB-crystallin, we have identified key vulnerabilities that provide a possible mechanism to explain this heat shock response. A docking study involving a small bioactive peptide should also aid in the development of new drug targets for the prevention of polyQ-based aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Taylor, J. P., Hardy, J., & Fischbeck, K. H. (2002). Toxic proteins in neurodegenerative disease. Science, 296, 1991–1995.

    Article  CAS  PubMed  Google Scholar 

  2. Ellisdon, A. M., Thomas, B., & Bottomley, S. P. (2006). The two-stage pathway of ataxin-3 fibrillogenesis involves a polyglutamine-independent step. Journal of Biological Chemistry, 281, 16888–16896.

    Article  CAS  PubMed  Google Scholar 

  3. Thakur, A. K., Jayaraman, M., Mishra, R., Thakur, M., Chellgren, V. M., Byeon, I. J., et al. (2009). Polyglutamine disruption of the huntingtin exon 1 N terminus triggers a complex aggregation mechanism. Nature Structural & Molecular Biology, 16, 380–389.

    Article  CAS  Google Scholar 

  4. de Chiara, C., Menon, R. P., Adinolfi, S., de Boer, J., Ktistaki, E., Kelly, G., et al. (2005). The AXH domain adopts alternative folds the solution structure of HBP1 AXH. Structure, 13, 743–753.

    Article  PubMed  Google Scholar 

  5. Ecroyd, H., & Carver, J. A. (2009). Crystallin proteins and amyloid fibrils. Cellular and Molecular Life Sciences, 66, 62–81.

    Article  CAS  PubMed  Google Scholar 

  6. Horwitz, J. (2003). Alpha-crystallin. Experimental Eye Research, 76, 145–153.

    Article  CAS  PubMed  Google Scholar 

  7. Gu, L., Abulimiti, A., Li, W., & Chang, Z. J. (2002). Monodisperse Hsp16.3 nonamer exhibits dynamic dissociation and reassociation, with the nonamer dissociation prerequisite for chaperone-like activity. Journal of Molecular Biology, 319, 517–526.

    Article  CAS  PubMed  Google Scholar 

  8. Claxton, D. P., Zou, P., & Mchaourab, H. S. (2008). Structure and orientation of T4 lysozyme bound to the small heat shock protein alpha-crystallin. Journal of Molecular Biology, 375, 1026–1039.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Ghosh, J. G., Houck, S. A., & Clark, J. I. (2007). Interactive sequences in the stress protein and molecular chaperone human alphaB crystallin recognize and modulate the assembly of filaments. International Journal of Biochemistry & Cell Biology, 39, 1804–1815.

    Article  CAS  Google Scholar 

  10. Bilen, J., & Bonini, N. M. (2007). Genome-wide screen for modifiers of ataxin-3 neurodegeneration in Drosophila. PLoS Genetics, 3, 1950–1964.

    Article  CAS  PubMed  Google Scholar 

  11. Robertson, A. L., Headeyb, S. J., Saunders, H. M., Ecroyd, H., Scanlon, H. M., Carver, J. A., et al. (2010). Small heat-shock proteins interact with a flanking domain to suppress polyglutamine aggregation. Proceedings of the National Academy of Sciences of the USA, 107, 10424–10429.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Fernández, A., & Scheraga, H. (2003). Insufficiently dehydrated hydrogen bonds as determinants of protein interactions. Proceedings of the National Academy of Sciences of the USA, 100, 113–118.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Healy, E. F., Johnson, S., Hauser, C., & King, P. (2009). Tyrosine kinase inhibition: Ligand binding and conformational change in c-Kit and c-Abl. Federation of European Biochemical Societies Letters, 583, 2899–2906.

    Article  CAS  PubMed  Google Scholar 

  14. Healy, E. F. (2011). The effect of desolvation on nucleophilic halogenase activity. Computational and Theoretical Chemistry, 964, 91–93.

    Article  CAS  Google Scholar 

  15. Healy, E. F., Romano, P., Mejia, M., & Lindfors, G, I. I. I. (2010). Acetylenic inhibitors of ADAM10 and ADAM17: In silico analysis of potency and selectivity. Journal of Molecular Graphics and Modelling, 29, 436–442.

    Article  CAS  PubMed  Google Scholar 

  16. Fernández, A., & Ridgway, S. (2003). Dehydron: A structure-encoded signal for protein interactions. Biophysical Journal, 85, 1914–1928.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Maddipati, S., & Fernández, A. (2006). Feature-similarity protein classifier as a ligand engineering tool. Biomolecular Engineering, 23, 307–315.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Fernández, A., & Lynch, M. (2011). Nature non-adaptive origins of interactome complexity. Nature, 474, 502–505.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Healy, E. F., & King, P. J. (2012). A mechanism of action for small heat shock proteins. Biochemical and Biophysical Research Communications, 417, 268–273.

    Article  CAS  PubMed  Google Scholar 

  20. Healy, E. F. (2012). A model for heterooligomer formation in the heat shock response of Escherichia coli. Biochemical and Biophysical Research Communications, 420, 639–643.

    Article  CAS  PubMed  Google Scholar 

  21. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., & Karplus, M. (1983). CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry, 4, 187–217.

    Article  CAS  Google Scholar 

  22. Nicastro, G., Menon, R. P., Masino, L., Knowles, P. P., McDonald, N. Q., & Pastore, A. (2005). The solution structure of the Josephin domain of ataxin-3: structural determinants for molecular recognition. Proceedings of the National Academy of Sciences of the USA, 102, 10493–10498.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Chen, R., Li, L., & Weng, Z. (2003). ZDOCK: An initial-stage protein-docking algorithm. Proteins, 52, 80–87.

    Article  CAS  PubMed  Google Scholar 

  24. Pierce, B., & Weng, Z. (2007). ZRANK: Reranking protein docking predictions with an optimized energy function. Proteins-Structure Function and Genetics, 67, 1078–1086.

    Article  CAS  Google Scholar 

  25. Huey, R., Morris, G. M., Olson, A. J., & Goodsell, D. S. (2007). A semiempirical free energy force field with charge-based desolvation. Journal of Computational Chemistry, 28, 1145–1152.

    Article  CAS  PubMed  Google Scholar 

  26. AutoDock Tools [http://autodock.scripps.edu/resources/adt/index_html].

  27. Gasteiger, J., & Marsili, M. (1980). Iterative partial equalization of orbital electronegativity—A rapid access to atomic charges. Tetrahedron, 36, 3219–3228.

    Article  CAS  Google Scholar 

  28. Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., et al. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19, 1639–1662.

    Article  CAS  Google Scholar 

  29. Fernández, A., & Berry, R. S. (2003). Proteins with H-bond packing defects are highly interactive with lipid bilayers: Implications for amyloidogenesis. Proceedings of the National Academy of Sciences of the USA, 100, 2391–2396.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Tam, S., Spiess, C., Auyeung, W., Joachimiak, L., Chen, B., Poirier, M. A., et al. (2009). The chaperonin TRiC blocks a huntingtin sequence element that promotes the conformational switch to aggregation. Nature Structural & Molecular Biology, 16, 1279–1285.

    Article  CAS  Google Scholar 

  31. Liebman, S. W., & Meredith, S. C. (2010). Protein folding: sticky N17 speeds huntingtin pile-up. Nature Chemical Biology, 6, 7–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors EFH and CL are grateful to the Welch Foundation (Grant # BH-0018) for its continuing support of the Chemistry Department at St. Edward’s University. We thank Dr. Arthur Olson for the AutoDock 4.0 and AutoGrid 4.0 programs. This paper is dedicated to the memory of Woody Guthrie, who on October 3, 1967 died from complications of Huntington’s disease.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eamonn F. Healy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Healy, E.F., Little, C. & King, P.J. A Model for Small Heat Shock Protein Inhibition of Polyglutamine Aggregation. Cell Biochem Biophys 69, 275–281 (2014). https://doi.org/10.1007/s12013-013-9795-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9795-1

Keywords

Navigation