Skip to main content
Log in

Repositioning Suture of the Erector Spinae Muscle for Lumbar Spine Surgery via the Posterior Approach: A Prospective Randomized Study

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

We prospectively studied the effectiveness of the repositioning suture of the erector spinae muscle for lumbar spine surgery using the posterior approach. 393 patients undergoing lumbar spine surgery were randomized to receive the repositioning or conventional suture of the erector spinae muscle. Time to stitch removal and drainage volume was recorded at 24 and 48 h after operation. Hemoglobin loss rate was determined at 48 h post operation and the rate of malunion (redness, swelling and effusion at stitch removal and would disruption after stitch removal) was recorded. Low back pain was evaluated using the visual analog scale (VAS) preoperatively and 6 and 12 months after operation. Time to stitch removal was comparable in lumbar spine surgery patients receiving the repositioning or conventional suture of the erector spinae muscle (P > 0.05). Compared with the conventional suture, the repositioning suture was associated with significantly reduced drainage volume both at 24 (P < 0.01) and 48 h after operation (P < 0.05). Hemoglobin loss rate at 48 h post operation was also markedly lower in lumbar spine surgery patients receiving the repositioning suture than in those receiving the conventional suture (P < 0.01 or 0.05). Furthermore, the malunion rate in lumbar spine surgery patients using the repositioning suture was markedly lower than that in the conventional group (P < 0.05 or 0.001). There was no difference in preoperative VAS scores in both the groups (P > 0.05). Compared with the conventional suture, the repositioning suture was associated with significantly reduced VAS scores both at 24 and 48 h after operation (P < 0.01 in both). The repositioning suture of the erector spinae muscle is superior to the conventional suture in posterior lumbar spine surgery with marked lessened pain and reduced drainage volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mahar, A., Kim, C., Wedemeyer, M., Mitsunaga, L., Odell, T., Johnson, B., et al. (2007). Short-segment fixation of lumbar burst fractures using pediele fixation at the level of the fracture. Spine, 32, 1503–1507.

    Article  PubMed  Google Scholar 

  2. Tezeren, G., & Kum, I. (2005). Posterior fixation of thoracolumbar burst fracture: Short-segment pedicle fixation versus long-segment instrumentation. Journal of Spinal Disorders and Techniques, 18, 485–488.

    Article  PubMed  Google Scholar 

  3. Apfel, C. C., Cakmakkaya, O. S., Martin, W., Richmond, C., Macario, A., George, E., et al. (2010). Restoration of disk height through non-surgical spinal decompression is associated with decreased discogenic low back pain: A retrospective cohort study. BMC Musculoskeletal Disorders, 11, 121–155.

    Article  Google Scholar 

  4. Häkkinen, A., Ylinen, J., Kautiainen, H., Tarvainen, U., & Kiviranta, I. (2005). Effects of home strength training and stretching versus stretching alone after lumbar disk surgery: A randomized study with a 1-year follow-up. Archives of Physical Medicine and Rehabilitation, 86, 865–870.

    Article  PubMed  Google Scholar 

  5. Pappas, C. T., Harrington, T., & Sonntag, V. K. (1992). Outcome analysis in 654 surgically treated lumbar disc herniations. Neurosurgery, 30, 862–866.

    Article  CAS  PubMed  Google Scholar 

  6. Choi, G., Raiturker, P. P., Kim, M. J., Chung, D. J., Chae, Y. S., & Lee, S. H. (2005). The effect of early isolated lumbar extension exercise program for patients with herniated disc undergoing lumbar discectomy. Neurosurgery, 57, 764–772.

    Article  PubMed  Google Scholar 

  7. Long, C. J., Brown, D. A., & Engelberg, J. (1980). Intervertebral disc surgery: Strategies for patient selection to improve surgical outcome. Journal of Neurosurgery, 52, 818–824.

    Article  CAS  PubMed  Google Scholar 

  8. Manniche, C., Asmussen, K. H., Vinterberg, H., Rose-Hansen, E. B., Kramhøft, J., & Jordan, A. (1994). Analysis of preoperative prognosticfactors in first-time surgery for lumbar disc herniation, including Finneson’s and modified Spengler’s score systems. Danish Medical Bulletin, 41, 110–115.

    CAS  PubMed  Google Scholar 

  9. Gray, H. (1980). Gray’s Anatomy (36th ed.). London: Warwick and Williams.

    Google Scholar 

  10. Cunningham, D. J. (1981). Textbook of Anatomy (12th ed.). London: Oxford University Press.

    Google Scholar 

  11. Morris, J. M., Lucas, D. B., & Breslar, B. (1962). Role of the trunk in stability of the spine. The Journal of bone and joint surgery, 43, 327–351.

    Google Scholar 

  12. Taylor, H., McGregor, A. H., Medhi-Zadeh, S., Richards, S., Kahn, N., Zadeh, J. A., et al. (2002). The impact of self-retaining retractors on the paraspinal muscles during posterior spinal surgery. Spine, 27, 2758–2762.

    Article  PubMed  Google Scholar 

  13. Kim, D. Y., Lee, S. H., Chung, S. K., & Lee, H. Y. (2009). Comparison of multifidus muscle atrophy and trunk extension muscle strength: Percutaneous versus open pedicle screw fixation. Spine, 30, 123–129.

    Article  Google Scholar 

  14. Mayer, T. G., Vanharanta, H., Gatchel, R. J., Mooney, V., Barnes, D., Judge, L., et al. (1989). Comparison of CT scan muscle measurements and isokinetic trunk strength in postoperative patients. Spine, 14, 33–36.

    Article  CAS  PubMed  Google Scholar 

  15. Onesti, S. T. (2004). Failed back syndrome. Neurologist, 10, 259–264.

    Article  PubMed  Google Scholar 

  16. Laasonen, E. M. (1984). Atrophy of sacrospinal muscle groups in patients with chronic, diffusely radiating lumbar back pain. Neuroradiology, 26, 9–13.

    Article  CAS  PubMed  Google Scholar 

  17. Sihvonen, T., Herno, A., Paljärvi, L., Airaksinen, O., Partanen, J., & Tapaninaho, A. (1993). Local denervation atrophy of paraspinal muscles in postoperative failed back syndrome. Spine, 18, 575–581.

    Article  CAS  PubMed  Google Scholar 

  18. Motosuneya, T., Asazuma, T., Tsuji, T., Watanabe, H., Nakayama, Y., & Nemoto, K. (2006). Postoperative change of the cross-sectional area of back musculature after 5 surgical procedures as assessed by magnetic resonance imaging. Journal of Spinal Disorders and Techniques, 19, 318–322.

    Article  PubMed  Google Scholar 

  19. Schwender, J. D., Holly, L. T., Rouben, D. P., & Foley, K. T. (2005). Minimally invasive transforaminal lumbar interbody fusion (TLIF): Technical feasibility and initial results. Journal of Spinal Disorders and Techniques, 18(Suppl), S1–S6.

    Article  PubMed  Google Scholar 

  20. Standring, S. (2005). The back. In Gray’s anatomy: The anatomical basis of clinical practice (pp. 733–773). Philadelphia: Elsevier Churchill Livingstone.

    Google Scholar 

  21. Moseley, G. L., Hodges, P. W., & Gandevia, S. C. (2003). External perturbation of the trunk in standing humans differentially activates components of the medial back muscles. Journal of Physiology, 547, 581–587.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Dickx, Nele., Cagnie, Barbara., & Achten, Erik. (2010). Differentiation between deep and superficial fibers of the lumbar multifidus by magnetic resonance imaging. European Spine Journal, 19, 122–128.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Macintosh, J. E., Bogduk, N., & Munro, R. R. (1986). The morphology of the human lumbar multifidus. Clinical Biomechanics, 1, 196–204.

    Article  CAS  PubMed  Google Scholar 

  24. Macdonald, D. A., Lorimer Moseley, G., & Hodges, P. W. (2006). The lumbar multifidus: Does the evidence support clinical beliefs? Manual Therapy, 11, 254–263.

    Article  PubMed  Google Scholar 

  25. Macintosh, J. E., & Bogduk, N. (1986). The biomechanics of the lumbar multifidus. Clinical Biomechanics, 1, 205–213.

    Article  CAS  PubMed  Google Scholar 

  26. Ward, S. R., Kim, C. W., Eng, C. M., Gottschalk, L. J., 4th, Tomiya, A., Garfin, S. R., et al. (2009). Architectural analysis and intraoperative measurements demonstrate the unique design of the multifidus muscle for lumbar spine stability. Journal of Bone and Joint Surgery. American Volume, 91, 176–185.

    Article  Google Scholar 

  27. Elain, M., Stanley, V., & Gerard, C. (2005). A morphological comparison of the human lumbar multifidus by chemical dissection. The journal of Manual & Manipulative Therapy, 16, 84–92.

    Google Scholar 

  28. Demoulin, C., Crielaard, J. M., & Vanderthommen, M. (2007). Spinal muscle evaluation in healthy individuals and low-back-pain patients: A literature review. Joint Bone Spine, 74, 9–13.

    Article  PubMed  Google Scholar 

  29. Kjaer, P., Tom, Bendix., Sorensen, J. S., Korsholm, L., & Leboeuf-Yde, C. (2007). Are MRI-defined fat infiltrations is associated with low back pain? BMC Medicine, 52, 1–10.

    Google Scholar 

Download references

Conflict of interest

The authors declared no conflict of interest involved in the manuscript and agreed to publish this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Jie Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, YJ., Fu, ZY., Hu, XP. et al. Repositioning Suture of the Erector Spinae Muscle for Lumbar Spine Surgery via the Posterior Approach: A Prospective Randomized Study. Cell Biochem Biophys 69, 75–80 (2014). https://doi.org/10.1007/s12013-013-9770-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9770-x

Keywords

Navigation