Skip to main content

Advertisement

Log in

Human Amnion Mesenchymal Cells Negative Co-stimulatory Molecules PD-L1 Expression and Its Capacity of Modulating Microglial Activation of CNS

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The objective of this study is to investigate the negative immunomodulatory capacity of human amniotic mesenchymal cells (AMSCs) and their possible intrinsic mechanism, by which we can confirm that they modulate microglial activation of central nervous system from multiple perspectives at the molecular level. The identification of the immune phenotype of AMSCs and microglial cells was executed by immunohistochemical methods and flow cytometry. Meanwhile, the influence and mechanism of amniotic mesenchymal cells in vitro on proliferation, cell cycle, and cytokine release of activated microglia (MI) would be detected by ELISA, β-liquid scintillation counting method, and flow cytometry. Human amnion mesenchymal cells highly expressed negative co-stimulatory molecules PD-L1, while its ligand PD1 was expressed with high level by activated MI. When adding the PD-L1mAb to the mixed culture system composed of AMSCs and activated MI, the proliferation inhibitory effect and the cycle-blocking effect produced by the former on the latter would be partially reversed; at the same time, the impact of the latter cytokine secretion would be adjusted. As a conclusion, AMSCs play inhibitory effects on microglial activation, proliferation, and immune effects partially through the PD-L1–PD1 signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Aldinucci, A., Rizzetto, L., Pieri, L., et al. (2010). Inhibition of immune synapse by altered dendritic cell actin distribution: A new pathway of mesenchymal stem cell immune regulation. The Journal of Immunology, 185(9), 5102–5110.

    Article  CAS  PubMed  Google Scholar 

  2. Choi, Y. S., Jeong, J. A., & Lim, D. S. (2012). Mesenchymal stem cell-mediated immature dendritic cells induce regulatory T cell-based immunosuppressive effect. Immunological Investigations, 41(2), 214–229.

    Article  CAS  PubMed  Google Scholar 

  3. Dheen, S. T., Kaur, C., & Ling, E. A. (2007). Microglial activation and its implications in the brain diseases. Current Medicinal Chemistry, 14, 1189–1197.

    Article  CAS  PubMed  Google Scholar 

  4. Gebler, A., Zabel, O., & Seliger, B. (2012). The immunomodulatory capacity of mesenchymal stem cells. Trends in Molecular Medicine, 18(2), 128–134.

    Article  CAS  PubMed  Google Scholar 

  5. Iravani, M. M., Leung, C. C., Sadeghian, M., et al. (2005). The acute and the long-term effects of nigral lipopolysaccharide administration on dopaminergic dysfunction and glial cell activation. European Journal of Neuroscience, 22(2), 317–330.

    Article  PubMed  Google Scholar 

  6. Jurewicz, M., Yang, S., Augello, A., et al. (2010). Congenic mesenchymal stem cell therapy reverses hyperglycemia in experimental type 1 diabetes. Diabetes, 59(12), 3139–3147.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Kaplan, J. M., Youd, M. E., Lodie, T. A., et al. (2011). Immunomodulatory activity of mesenchymal stem cells. Current Stem Cell Research and Therapy, 6(4), 297–316.

    Article  CAS  PubMed  Google Scholar 

  8. Krampera, M., Sartoris, S., Liotta, F., et al. (2007). Immune regulation by mesenchymal stem cells derived from adult spleen and thymus. Stem Cells and Development, 16(5), 797–810.

    Article  CAS  PubMed  Google Scholar 

  9. Kronsteiner, B., Wolbank, S., Peterbauer, A., et al. (2011). Human mesenchymal stem cells from adipose tissue and amnion influence T-cells depending on stimulation method and presence of other immune cells. Stem Cells and Development, 20(12), 2115–2126.

    Article  CAS  PubMed  Google Scholar 

  10. Larsen, S., & Lewis, I. D. (2011). Potential therapeutic applications of mesenchymal stromal cells. Pathology, 43(6), 592–604.

    CAS  PubMed  Google Scholar 

  11. Lassmann, H. (2008). Mechanisms of inflammation induced tissue injury in multiple sclerosis. Journal of the Neurological Sciences, 274, 45–47.

    Article  CAS  PubMed  Google Scholar 

  12. Li, H., Guo, Z., Zhu, H., et al. (2010). Transplanted mesenchymal stem cells can inhibit the three developmental stages of murine acute graft-versus-host disease. In Vivo, 24(5), 659–666.

    PubMed  Google Scholar 

  13. Merson, T. D., Binder, M. D., & Kilpatrick, T. J. (2010). Role of cytokines as mediators and regulators of microglial activity in inflammatory demyelination of the CNS. Neuromolecular Medicine, 12(2), 99–132.

    Article  CAS  PubMed  Google Scholar 

  14. Ning, H. M., Jin, J. G., Hu, J. W., et al. (2005). Effect of human bone marrow mesenchymal stem cell on allogeneic T lymphocyte phenotype in vitro. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 13(1), 43–49.

    CAS  PubMed  Google Scholar 

  15. Ransohoff, R. M., & Perry, V. H. (2009). Microglial physiology: Unique stimuli, specialized responses. Annual Review of Immunology, 27, 119–145.

    Article  CAS  PubMed  Google Scholar 

  16. Rodríguez, R., García-Castro, J., Trigueros, C., et al. (2012). Multipotent mesenchymal stromal cells: Clinical applications and cancer modeling. Advances in Experimental Medicine and Biology, 741, 187–205.

    Article  PubMed  Google Scholar 

  17. Saijo, K., & Glass, C. K. (2011). Microglial cell origin and phenotypes in health and disease. Nature Reviews Immunology, 11(11), 775–787.

    Article  CAS  PubMed  Google Scholar 

  18. Schmitz, T., & Chew, L. J. (2008). Cytokines and myelination in the central nervous system. The Scientific World Journal, 8, 1119–1147.

    Article  CAS  Google Scholar 

  19. Sioud, M., Mobergslien, A., Boudabous, A., et al. (2011). Mesenchymal stem cell-mediated T cell suppression occurs through secreted galectins. International Journal of Oncology, 38(2), 385–390.

    Article  CAS  PubMed  Google Scholar 

  20. Stagg, J. (2007). Immune regulation by mesenchymal stem cells: Two sides to the coin. Tissue Antigens, 69(1), 1–9.

    Article  CAS  PubMed  Google Scholar 

  21. Stalder, A. K., Carson, M. J., Pagenstecher, A., et al. (1998). Late-onset chronic inflammatory encephalopathy in immune-competent and severe combined immune-deficient (SCID) mice with astrocyte-targeted expression of tumor necrosis factor. American Journal of Pathology, 153(3), 767–783.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Wong, A., Dukic-Stefanovic, S., Gasic-Milenkovic, J., et al. (2001). Anti-inflammatory antioxidants attenuate the expression of inducible nitric oxide synthase mediated by advanced glycation end products in murine MI. European Journal of Neuroscience, 14(12), 1961–1967.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Lan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, W., Lan, Q., Lu, H. et al. Human Amnion Mesenchymal Cells Negative Co-stimulatory Molecules PD-L1 Expression and Its Capacity of Modulating Microglial Activation of CNS. Cell Biochem Biophys 69, 35–45 (2014). https://doi.org/10.1007/s12013-013-9763-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9763-9

Keywords

Navigation