Skip to main content
Log in

Unique Structural Changes in Calcium-Bound Calmodulin Upon Interaction with Protein 4.1R FERM Domain: Novel Insights into the Calcium-dependent Regulation of 4.1R FERM Domain Binding to Membrane Proteins by Calmodulin

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Calmodulin (CaM) binds to the FERM domain of 80 kDa erythrocyte protein 4.1R (R30) independently of Ca2+ but, paradoxically, regulates R30 binding to transmembrane proteins in a Ca2+-dependent manner. We have previously mapped a Ca2+-independent CaM-binding site, pep11 (A264KKLWKVCVEHHTFFR), in 4.1R FERM domain and demonstrated that CaM, when saturated by Ca2+ (Ca2+/CaM), interacts simultaneously with pep11 and with Ser185 in A181KKLSMYGVDLHKAKD (pep9), the binding affinity of Ca2+/CaM for pep9 increasing dramatically in the presence of pep11. Based on these findings, we hypothesized that pep11 induced key conformational changes in the Ca2+/CaM complex. By differential scanning calorimetry analysis, we established that the C-lobe of CaM was more stable when bound to pep11 either in the presence or absence of Ca2+. Using nuclear magnetic resonance spectroscopy, we identified 8 residues in the N-lobe and 14 residues in the C-lobe of pep11 involved in interaction with CaM in both of presence and absence of Ca2+. Lastly, Kratky plots, generated by small-angle X-ray scattering analysis, indicated that the pep11/Ca2+/CaM complex adopted a relaxed globular shape. We propose that these unique properties may account in part for the previously described Ca2+/CaM-dependent regulation of R30 binding to membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

4.1R:

Protein 4.1R

CaM:

Calmodulin

CD:

Circular dichroism spectroscopy

DSC:

Differential scanning calorimetry

FERM:

Four.one–ezrin–radixin–moesin

NMR:

Nuclear magnetic resonance

SAXS:

Small-angle X-ray scattering

References

  1. Diakowski, W., Grzybek, M., & Sikorski, A. F. (2006). Protein 4.1, a component of the erythrocyte membrane skeleton and its related homologue proteins forming the protein 4.1/FERM superfamily. Folia Histochemica et Cyrobiologica, 44, 231–248.

    CAS  Google Scholar 

  2. Nunomura, W., & Takakuwa, Y. (2006). Regulation of protein 4.1R interactions with membrane proteins by Ca2+ and calmodulin. Frontier Bioscience, 11, 1522–1539.

    Article  CAS  Google Scholar 

  3. Pasternack, G. R., Anderson, R. A., Leto, T. L., & Marchesi, V. T. (1985). Interactions between protein 4.1 and band 3. An alternative binding site for an element of the membrane skeleton. Journal of Biological Chemistry, 260, 3676–3683.

    CAS  PubMed  Google Scholar 

  4. Anderson, R. A., & Lovrien, R. E. (1984). Glycophorin is linked by band 4.1 protein to the human erythrocyte membrane skeleton. Nature, 307(5952), 655–658.

    Article  CAS  PubMed  Google Scholar 

  5. Nunomura, W., Takakuwa, Y., Tokimitsu, R., Krauss, S. W., Kawashima, M., & Mohandas, N. (1997). Regulation of CD44-protein 4.1 interaction by Ca2+ and calmodulin. Implications for modulation of CD44-ankyrin interaction. Journal of Biological Chemistry, 272, 30322–30328.

    Article  CAS  PubMed  Google Scholar 

  6. Robb, V. A., Li, W., Gascard, P., Perry, A., Mohandas, N., & Gutmann, D. H. (2003). Identification of a third Protein 4.1 tumor suppressor, Protein 4.1R, in meningioma pathogenesis. Neurobiology of disease, 13, 191–202.

    Article  CAS  PubMed  Google Scholar 

  7. Hattori, M., Nunomura, W., Ito, E., Ohta, H., & Takakuwa, Y. (2006). Regulation of ankyrin interaction with CD44 by protein 4.1 in Hela cells. Membrane, 31, 107–114.

    CAS  Google Scholar 

  8. Nunomura, W., Denker, S. P., Barber, D. L., Takakuwa, Y., & Gascard, P. (2012). Characterization of cytoskeletal protein 4.1R interaction with NHE1 (Na+/H+ exchanger isoform 1). Biochemical Journal, 446, 427–435.

    Article  CAS  PubMed  Google Scholar 

  9. Marfatia, S. M., Morais-Cabral, J. H., Kim, A. C., Byron, O., & Chishti, A. H. (1997). The PDZ domain of human erythrocyte p55 mediates its binding to the cytoplasmic carboxyl terminus of glycophorin C. Analysis of the binding interface by in vitro mutagenesis. Journal of Biological Chemistry, 272, 24191–24197.

    Article  CAS  PubMed  Google Scholar 

  10. Nunomura, W., Takakuwa, Y., Parra, M., Conboy, J., & Mohandas, N. (2000). Regulation of protein 4.1R, p55, and glycophorin C ternary complex in human erythrocyte membrane. Journal of Biological Chemistry, 275, 24540–24546.

    Article  CAS  PubMed  Google Scholar 

  11. Jurado, L. A., Chockalingam, P. S., & Jarrett, H. W. (1999). Apocalmodulin. Physiological Review, 79, 661–682.

    CAS  Google Scholar 

  12. Yap, K. L., Kim, J., Truong, K., Sherman, M., Yuan, T., & Ikura, M. (2000). Calmodulin target database. Journal of Structural and Functional Genomics, 1, 8–14. http://calcium.uhnres.utoronto.ca/ctdb/ctdb/motifs/1-10_motif.html.

    Google Scholar 

  13. Hoeflich, K. P., & Ikura, M. (2002). Calmodulin in action: diversity in target recognition and activation mechanisms. Cell, 108, 739–742.

    Article  CAS  PubMed  Google Scholar 

  14. Ishida, H., & Vogel, H. J. (2006). Protein-peptide interaction studies demonstrate the versatility of calmodulin target protein binding. Protein and Pepidet Letters, 13, 455–465.

    Article  CAS  Google Scholar 

  15. Gifford, J. L., Walsh, M. P., & Vogel, H. J. (2007). Structures and metal-ion- binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochemical Journal, 405, 199–221.

    Article  CAS  PubMed  Google Scholar 

  16. Tanaka, T., Kadowaki, K., Lazarides, E., & Sobue, K. (1991). Ca2+-dependent regulation of the spectrin/actin interaction by calmodulin and protein 4.1. Journal of Biological Chemistry, 266, 1134–1140.

    CAS  PubMed  Google Scholar 

  17. Takakuwa, Y., & Mohandas, N. (1988). Modulation of erythrocyte membrane material properties by Ca2+ and calmodulin. Implications for their role in regulation of skeletal protein interactions. Journal of Clinical Investigation, 82, 394–400.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Lombardo, C. R., & Low, P. S. (1994). Calmodulin modulates protein 4.1 binding to human erythrocyte membranes. Biochimica et Biophysica Acta, 1196, 139–144.

    Article  PubMed  Google Scholar 

  19. Nunomura, W., Takakuwa, Y., Parra, M., Conboy, J. G., & Mohandas, N. (2000). Ca2+-dependent and Ca2+-independent calmodulin binding sites in erythrocyte protein 4.1. Implications for regulation of protein 4.1 interactions with transmembrane proteins. Journal of Biological Chemistry, 275, 6360–6367.

    Article  CAS  PubMed  Google Scholar 

  20. Nunomura, W., Sasakura, D., Shiba, K., Nakamura, S., Kidokoro, S., & Takakuwa, Y. (2011). Structural stabilization of protein 4.1R FERM domain upon binding to apo-calmodulin: Novel insights into the biological significance of the calcium- independent binding of calmodulin to protein 4.1R. Biochemical Journal, 440, 367–374.

    Article  CAS  PubMed  Google Scholar 

  21. Han, B. G., Nunomura, W., Takakuwa, Y., Mohandas, N., & Jap, J. K. (2000). Protein 4.1R core domain structure and insights into regulation of cytoskeletal organization. Nature Structural Biology, 7, 871–875.

    Article  CAS  PubMed  Google Scholar 

  22. Mertens, H. D., & Svergun, D. I. (2010). Structural characterization of proteins and complexes using small-angle X-ray solution scattering. Journal of Structural Biology, 172, 128–141.

    Article  CAS  PubMed  Google Scholar 

  23. Isozumi, N., Iida, Y., Nakatomi, A., Nemoto, N., Yazawa, M., & Ohki, S. (2011). Conformation of the calmodulin-binding domain of metabotropic glutamate receptor subtype 7 and its interaction with calmodulin. Journal of Biochemistry, 149, 463–474.

    Article  CAS  PubMed  Google Scholar 

  24. Kitagawa, C., Nakatomi, A., Hwang, D., Osaka, I., Fujimori, H., Kawasaki, H., et al. (2011). Roles of the C-terminal residues of calmodulin in structure and function. Biophysics, 7, 35–49.

    Article  CAS  Google Scholar 

  25. Wetlaufer, D. B. (1962). Ultraviolet spectra of proteins and amino acids. Advances in Protein Chemistry, 17, 303–391.

    Article  CAS  Google Scholar 

  26. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., & Bax, A. (1995). NMR pipe: A multidimensional spectral processing system based on UNIX pipes. Journal of Biomolecular NMR, 6, 277–293.

    Article  CAS  PubMed  Google Scholar 

  27. Tsalkova, T. N., & Privalov, P. (1985). Thermodynamic study of domain organization in troponin C and calmodulin. Journal of Molecular Biology, 181, 533–544.

    Article  CAS  PubMed  Google Scholar 

  28. Kidokoro, S., & Wada, A. (1987). Determination of thermodynamic functions from scanning calorimetry data. Biopolymers, 26, 213–229.

    Article  CAS  Google Scholar 

  29. Kidokoro, S., Uedaira, H., & Wada, A. (1988). Determination of thermodynamic functions from scanning calorimetry data II. For the system that includes self-dissociation/association process. Biopolymers, 27, 221–225.

    Article  Google Scholar 

  30. Nakamura, S., Seki, Y., Katoh, E., & Kidokoro, S. (2011). Thermodynamic and structural properties of the acid molten globule state of horse cytochrome C. Biochemistry, 50, 3116–3126.

    Article  CAS  PubMed  Google Scholar 

  31. Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analitical Chemistry, 36, 1627–1639.

    Article  CAS  Google Scholar 

  32. Matsushima, N., Hyashi, N., Jinbo, Y., & Izumi, Y. (2000). Ca2+-bound calmodulin forms a compact globular structure on binding four trifluoperazin molecule in solution. Biochemical Journal, 347, 211–215.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Nunomura, W., Jinbo, Y., Isozumi, N., Ohki, S., Izumi, Y., Matsushima, N., et al. (2013). Novel mechanism of regulation of protein 4.1G binding properties through Ca2+/calmodulin-mediated structural changes. Cell Biochemistry and Biophysics, 66, 545–558.

    Article  CAS  PubMed  Google Scholar 

  34. Guinier, A., & Fournet, G. (1955). Small-angle scattering of X-rays. New York: Wiley.

    Google Scholar 

  35. Glatter, O., & Kratky, O. (1982). Small angle X-ray scattering. London: Academic Press.

    Google Scholar 

  36. Izumi, Y., Watanabe, H., Watanabe, N., Aoyama, A., Jinbo, Y., & Hayashi, N. (2008). Solution X-ray scattering reveals a novel structure of calmodulin complexed with a binding domain peptide from the HIV-1 Matrix Protein p17. Biochemistry, 47, 7158–7166.

    Article  CAS  PubMed  Google Scholar 

  37. Svergun, D. I. (1992). Determination on the regularization parameter in indirect-transform methods using perceptual criteria. Journal of Applied Crystallography, 25, 495–503.

    Article  Google Scholar 

  38. Hultschig, C., Hecht, H. J., & Frank, R. (2004). Systematic delineation of a calmodulin peptide interaction. Journal of Molecular Biology, 343, 559–568.

    Article  CAS  PubMed  Google Scholar 

  39. Rhoadsi, A. R., & Friedberg, F. (1997). Sequence motifs for calmodulin recognition. FASEB Journal, 11, 331–340.

    Google Scholar 

  40. Nunomura, W., Gascard, P., & Takakuwa, Y. (2011). Insights into the function of the unstructured N-terminal domain of proteins 4.1R and 4.1G in erythropoiesis. International Journal of Cell Biology. doi:10.1155/2011/943272.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Takakuwa, Y. (2000). Protein 4.1, a multifunctional protein of the erythrocyte membrane skeleton: structure and functions in erythrocytes and nonerythroid cells. International Journal of Hematology, 72, 298–309.

    CAS  PubMed  Google Scholar 

  42. Kowluru, R. A., Heidorn, D. B., Edmondson, S. P., Bitensky, M. W., Kowluru, A., Downer, N. W., et al. (1989). Glycation of calmodulin: chemistry and structural and functional consequences. Biochemistry, 28, 2220–2228.

    Article  CAS  PubMed  Google Scholar 

  43. Balog, E. M., Lockamy, E. L., Thomas, D. D., & Ferrington, D. A. (2009). Site-specific methionine oxidation initiates calmodulin degradation by the 20S proteasome. Biochemistry, 48, 3005–3016.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Kosk-Kosicka, D., Bzdega, T., Wawrzynow, A., Scaillet, S., Nemcek, K., & Johnson, J. D. (1990). Erythrocyte Ca2+-ATPase: activation by enzyme oligomerization versus by calmodulin. Advances in Experimental Medicine and Biology, 269, 169–174.

    Article  CAS  PubMed  Google Scholar 

  45. Meador, W. E., Means, A. R., & Quiocho, F. A. (1993). Modulation of calmodulin plasticity in molecular recognition on the basis of X-ray structures. Science, 262, 1718–1721.

    Article  CAS  PubMed  Google Scholar 

  46. Köster, S., Pavkov-Keller, T., Kühlbrandt, W., & Yildiz, Ö. (2011). Structure of human Na+/H+ exchanger NHE1 regulatory region in complex with calmodulin and Ca2+. Journal of Biological Chemistry, 286, 40954–40961.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Ikura, M., Kay, L. E., Mrinks, M., & Bax, A. (1991). Triple-resonance multi- dimensional NMR study of calmodulin complexed with the binding domain of skeletal muscle myosin light-chain kinase: indication of a conformational change in the central helix. Biochemistry, 30, 5498–5504.

    Article  CAS  PubMed  Google Scholar 

  48. Ikura, M., Clore, G. M., Gronenborn, A. M., Zhu, G., Klee, C. B., & Bax, A. (1992). Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science, 256, 632–638.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Philippe Gascard, Department of Pathology, University of California, San Francisco, USA, for critical reading and editing of the manuscript. The authors thank also Professors Norio Matsushima, Division of Physics, Center for Medical Education, Sapporo Medical University (Hokkaido, Japan), and Yoshinobu Izumi, Yamagata University (Yamagata, Japan), for their useful discussion of the SAXS data. Lastly, the authors thank Dr. Yasushi Sakaguchi, DKSH Management Ltd./DKSH Holding Ltd. (Tokyo, Japan) for his technical assistance with DSC measurements. This work was supported in part by Grant-in-Aid for Scientific Research from the Ministry of Education Culture, Sport, Science and Technology of Japan (KAKENHI) 15570123 to WN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wataru Nunomura.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4407 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nunomura, W., Isozumi, N., Nakamura, S. et al. Unique Structural Changes in Calcium-Bound Calmodulin Upon Interaction with Protein 4.1R FERM Domain: Novel Insights into the Calcium-dependent Regulation of 4.1R FERM Domain Binding to Membrane Proteins by Calmodulin. Cell Biochem Biophys 69, 7–19 (2014). https://doi.org/10.1007/s12013-013-9758-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9758-6

Keywords

Navigation